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Abstract—Cohesive subgraphmining on attributed graphs is a fundamental problem in graph data analysis. Existing cohesive subgraph

mining algorithms on attributed graphs do not consider the fairness of attributes in the subgraph. In this article, we, for the first time, introduce

fairness into thewidely-used cliquemodel tomine fairness-aware cohesive subgraphs. In particular, we propose three novel fairness-aware

maximal cliquemodels on attributed graphs, calledweak fair clique, strong fair clique and relative fair clique, respectively. To enumerate all weak

fair cliques,wedevelop anefficient backtracking algorithmcalledWFCEnum equippedwith a novel colorful k-core basedpruning technique.We

also propose an efficient enumeration algorithm calledSFCEnum to find all strong fair cliques based on a newattribute-alternatively-selection

search technique. To further improve the efficiency, we also present several non-trivial ordering techniques for bothweak and strong fair clique

enumerations. To enumerate all relative fair cliques, we design an enhanced colorful k-core based pruning technique for 2D attributes, and

develop two efficient search algorithms:RFCRefineEnum andRFCAlterEnum for arbitrary dimension attributes. The results of extensive

experiments on four real-world graphs demonstrate the efficiency, scalability and effectiveness of the proposed algorithms.

Index Terms—Attributed graph, fairness, maximal clique enumeration

Ç

1 INTRODUCTION

COMPLEX networks in the realworld, such as social networks,
communication networks and biological networks, can be

modeled as graphs. Graph analysis techniques have been exten-
sively studied to help understand the features of networks.
Community detection, which aims at finding cohesive sub-
graph structures in networks, is a fundamental problem in
graph analysis that has attractedmuch attention for decades [1],
[2], [3]. As an elementarymodel, clique has beenwidely used to
reveal dense community structures of graphs [4], [5].Mining cli-
ques in a graphhas awide range of applications, includingmin-
ing overlapping communities in social networks [6], identifying
protein complexes in protein networks [7], and finding groups
with abnormal transactions in financial networks [8].

Many real-life networks are often attributed graphs where
vertices or edges are associated with attribute information.
There are a large number of studies that focus on finding com-
munities on attributed graphs [9], [10], [11], [12], [13], [14],
[15], [16]. However, those works either require a high correla-
tion of attributes in a community or aim to find communities

satisfying some attribute constraints. None of them takes into
account the fairness of attributes in the community.

Recently, the concept of fairness is mainly considered in
the machine learning community [17], [18], [19]. Many stud-
ies reveal that a rank produced by a biased machine learn-
ing model can result in systematic discrimination and
reduce visibility for an already disadvantaged group (e.g.,
incorporations of gender and racial and other biases) [20],
[21], [22]. Therefore, many different definitions of fairness,
such as individual fairness, group fairness [17], and related
algorithms were proposed to generate a fairness ranking.
Some other studies focus on the fairness in classification
models, such as demographic parity [19] and equality of
opportunity [18]. All these studies suggest that the concept
of fairness is very important in machine learning models.

Motivated by the concept of fairness in machine learning,
we introduce fairness for an important graph mining task, i.e.,
mining cliques in a graph. Mining fair cliques has a variety of
applications. For example, consider an online social network
where each user has an attribute denoting his/her gender. We
may want to find a clique community in which both the num-
ber of males and females reach a certain threshold, or the num-
ber of males is exactly the same or slightly different from the
number of females. Compared to the traditional clique commu-
nities, the fair clique communities can overcome gender bias.
In a collaboration network, each vertex has an attribute repre-
senting his/her research topic. The fair cliques can be used to
identify research groups who work closely and also have
diverse research topics, because the fair cliques have already
considered the fairness over different research topics. Finding
such fair cliques can help identify the groups of experts from
diverse research areas to conduct a particular task.

In this article, we focus on the problem of finding fairness-
aware cliques in attributed graphs where each vertex in the
graph has one attribute. We propose three new models to
characterize the fairness of a clique, called weak fair clique,
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strong fair clique and relative fair clique, respectively. A weak
fair clique is a maximal subgraph which 1) is a clique, and 2)
requires the number of vertices of every attribute value is no
less than a given threshold k, thus it can guarantee the fairness
over all attributes to some extent. A strong fair clique is a max-
imal subgraph in which 1) the vertices form a clique, and 2)
the number of vertices for each attribute value is no less than k
and exactly the same, thus it can fully guarantee the fairness
over all attributes. A relative fair clique is a maximal subgraph
in which 1) the vertices form a clique, 2) the number of vertices
for each attribute value is no less than k, and 3) the difference
in the number of vertices for all attributes is no larger than a
given threshold d. Thus, the relative fair clique is a compro-
mise model between the weak and strong fair cliques, which
not only guarantees the coverage of each attribute, but also
implements a more flexible balance between all attributes. We
show that finding all weak, strong and relative fair cliques is
NP-hard. Furthermore, the problem of enumerating all strong
and relative fair cliques is often much more challenging than
the problem of enumerating all weak fair cliques. To solve our
problems, we first propose a backtracking enumeration algo-
rithm called WFCEnum with a novel colorful k-core based
pruning technique to find all weak fair cliques. Then, we pro-
pose a SFCEnum algorithm to enumerate all strong fair cli-
ques based on a new attribute-alternatively-selection search
strategy. We also develop several non-trivial ordering techni-
ques to further speed up the WFCEnum and SFCEnum algo-
rithms. Additionally, to enumerate all relative fair cliques,
we design an enhanced colorful k-core based pruning tech-
nique for 2D attribute, and present two efficient search algo-
rithms, i.e., RFCRefineEnum and RFCAlterEnum, to handle
any dimension attribute. Below, we summarize the main
contributions of this paper.

New Models. We propose a weak fair clique, a strong fair
clique and a relative fair clique to characterize the fairness
of a cohesive subgraph. To the best of our knowledge, we
are the first to introduce the concept of fairness for cohesive
subgraph models.

Novel Algorithms. We first propose a novel concept called
colorful k-core and develop a linear-time algorithm to com-
pute the colorful k-core. We show that the weak fair cliques,
strong fair cliques and relative fair cliques must be contained
in the colorful k-core, thus we can use it to prune unpromis-
ing vertices before enumerating weak, strong or relative fair
cliques. Then, we propose a backtracking algorithm
WFCEnum to find all weak fair cliques with a colorful k-core
induced ordering. To enumerate all strong fair cliques, we
further develop a novel fairness k-core based pruning tech-
nique which is more effective than the colorful k-core prun-
ing. We also present a backtracking algorithm SFCEnum
with a new attribute-alternatively-selection search strategy to
enumerate all strong fair cliques. In addition, a heuristic
ordering method is also proposed to further improve the effi-
ciency of the strong fair clique enumeration algorithm. For
the problem of relative fair clique enumeration, we develop
two efficient algorithms, i.e., RFCRefineEnum based on a
weak fair clique refinement technique and RFCAlterEnum
equipped with an attribute-alternatively-selection strategy.
We also design an enhanced colorful k-core based pruning
technique for 2D attributes which can also be used to find all
weak fair cliques.

Extensive Experiments. We conduct extensive experi-
ments to evaluate the efficiency and effectiveness of our algo-
rithms using four real-world networks. The results indicate
that the colorful k-core based pruning technique is very pow-
erful which can significantly prune the original graph. The
results also show that the WFCEnum, SFCEnum,
RFCRefineEnum and RFCAlterEnum algorithms are efficient
in practice. These algorithms can enumerate all fair cliques on
a large graph with 2,523,387 vertices and 7,918,801 edges in
less than 3 hours. In addition, we conduct a case study on
DBLP to evaluate the effectiveness of our algorithms. The
results illustrate that the proposed fair clique enumeration
algorithms, i.e., WFCEnum, SFCEnum, RFCRefineEnum and
RFCAlterEnum, can find fair communities with different
research areas. Moreover, SFCEnum can further keep balance
of attribute values in the subgraph, and RFCRefineEnum and
RFCAlterEnum can explore the communities which not only
cover each attribute, but also appropriately avoid the imbal-
ance of attributes.

Reproducibility. The source code of this paper is released at
Github: https://github.com/honmameiko22/fairnessclique for
reproducibility purpose.

2 PRELIMINARIES

Let G ¼ ðV;E;AÞ be an undirected, unweighted attributed
graph with n ¼ jV j and m ¼ jEj. Each vertex u in G has an
attribute A and we denote its value as u:val. Let Aval be the
set of all possible values of attribute A, namely, Aval ¼
fu:valju 2 V g. The cardinality of Aval is denoted by An, i.e.,
An ¼ jAvalj. For brevity, we also represent Aval as Aval ¼
faij0 � i < Ang. We denote the set of neighbors of a vertex
u byNðuÞ, and the degree of u by dðuÞ ¼ jNðuÞj. For a vertex
subset S � V , the subgraph induced by S is defined as GS ¼
ðS;ES;AÞ, where ES ¼ fðu; vÞjðu; vÞ 2 E; u; v 2 Sg and A is
the vertex attribute in G.

In a graph G, a clique C is a complete subgraph where
each pair of vertices in C is connected. Perhaps, clique is the
most fundamental model to characterize cohesive sub-
graphs in a graph. Based on the clique model, we present
three novel fairness-aware clique models which are able to
capture the fairness property of cohesive subgraphs.

Definition 1. (Weak fair clique) Given an attributed graph G
and an integer k, a clique C of G is a weak fair clique of G if (1)
for each value ai 2 Aval , the number of vertices whose value
equals ai is no less than k; (2) there is no clique C0 � C satisfy-
ing (1).

Clearly, by Definition 1, the weak fair clique model exhib-
its the fairness property over all types of vertices (with differ-
ent attribute values), as it requires the number of vertices for
each attribute in the subgraph must be no less than k. How-
ever, the weak fair clique model may not strictly guarantee
fairness for all attributes because there may be an excessive
number of nodes with some attributes. Below, we propose a
strong fair clique model which strictly requires the subgraph
has the same number of vertices for each attribute.

Definition 2. (Strong fair clique) Given an attributed graph G
and an integer k, a clique C of G is a strong fair clique of G if
(1) for each ai 2 Aval, the number of vertices whose value equals
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ai is no less than k; (2) the number of vertices for each ai is
exactly the same; (3) there is no clique C0 � C satisfying (1)
and (2).

With Definition 2, the strong fair clique model requires
the subgraph has the strictly same number of vertices for
each attribute. Thus, it can overcome the imbalance between
attributes in a clique caused by the excessive number of ver-
tices for some attributes in the weak fair clique. However,
the strong fair clique model guaranteeing fairness for all
attributes is too strict to work in some real-life applications
flexibly. For example, in an online social network with gen-
der as the attribute, we only want to find a clique commu-
nity in which the number of males and females is roughly
equal rather than strictly equal. To this end, we propose a
relative fair clique to achieve a good compromise, which
absorbs the advantages of the weak and strong fair clique
models.

Definition 3. (Relative fair clique) Given an attributed graph
G and two integers k; d, a clique C of G is a relative fair clique
ofG if (1) for each value ai 2 Aval, the number of vertices whose
value equals ai is no less than k; (2) for arbitrary two attribute
ai and aj, the difference of the number of vertices with ai and aj
in C is no larger than d, i.e., jcntCðaiÞ � cntCðajÞj � d; (3)
there is no clique C0 � C satisfying (1) and (2).

Example 1. Consider the attributed graph G in Fig. 2. We
suppose that k ¼ 3 and d ¼ 1. By Definition 3, we can easily
derive that the clique C1 induced by fv1; v2; v3; v4; v5; v6; v7g
is a relative fair clique that involves 3 vertices with a and 4
vertices with b. While the clique C2 induced by
fv1; v2; v3; v4; v5; v6; v7; v8g is not a relative fair clique since it
contains 5 vertices with a and 3 vertices with b, which viola-
tes the condition (2) of Definition 3. The clique C3 induced
by fv1; v2; v3; v4; v5; v6g is also not because C1 is a larger cli-
que that contains C3, which violates the condition (3) of Def-
inition 3. Clearly, C2 is a weak fair clique and C3 is a strong
fair clique, we have C2 � C1 � C3. Thus, C2 is indeed a
compromise clique between C1 and C3.

Remark. According to Definitions 1, 2, and 3, the param-
eter k in our fair clique models provides a lower bound on
the size of a clique. There are at least k�An vertices in a
weak/strong/relative fair clique. Note that the guarantee of
fairness in our models lies in that no matter how large a cli-
que is, every attribute owns at least k vertices. The weak fair
clique model is suitable to the applications which require a
lower-bound guarantee of fairness. The strong fair clique,
however, aims at finding absolutely fair cliques, which can
be applied in the scenarios like finding a group of people
where the number of females equals that of males. In com-
parison, the relative fair clique achieves a compromise
between the weak fair clique and strong fair clique models.
Specifically, when d ¼ 1, a relative fair clique degenerates
to a weak fair clique, and it evolves into a strong fair clique
in the case of d ¼ 0. Hence, a relative fair clique must be con-
tained in weak fair cliques, and a strong fair clique must be
contained in relative fair cliques.

Note that in the relative fair clique model, we also
require the number of vertices for each attribute in the cli-
que must be no less than k. This is because if we only guar-
antee that the difference of the number of each attribute is

below a given threshold d, we may miss fairness in some
cases. For example, suppose that we have three attributes:
A, B and C, and the given difference threshold is d ¼ 5.
Then, we may find a 5-clique that has 5 vertices with A, 0
vertex with B, and 0 vertex with C which is clearly unfair
for the attributes B and C. Hence, all our definitions of fair-
ness-aware cliques need to guarantee that each attribute has
at least k vertices.

Problem Statement. Given an attributed graph G and two
integers k and d, our goal is to enumerate all weak fair cli-
ques and strong fair cliques with k, and enumerate all rela-
tive fair cliques in Gwith k and d.

Challenges. We first discuss the hardness of the weak fair
clique enumeration problem. Considering a special case:
k ¼ 0. Clearly, the weak fair clique enumeration problem
degenerates to the traditional maximal clique enumeration
problem which is NP-hard. Thus, finding all weak fair cli-
ques is also NP-hard. Enumerating strong fair cliques is
more challenging than enumerating all weak fair cliques for
the following reasons. (1) The number of strong fair cliques
is often much larger than that of weak fair cliques. By defini-
tion, we can see that a strong fair clique is always contained
in a weak fair clique. On the contrary, a weak fair clique is
not necessarily a strong fair clique. (2) Each weak fair clique
must be a traditional maximal clique, but the strong fair cli-
que may not be a traditional maximal clique, which means
that it is difficult to check the maximality of strong fair cli-
ques. For relative fair clique enumeration problem, when
d ¼ 1, it degenerates to the weak clique enumeration prob-
lem which is NP-hard. Moreover, like the strong fair clique
model, the number of relative fair cliques is also much
larger than that of weak fair cliques and it is also difficult to
check the maximality.

Unlike traditional maximal cliques, our fair clique models
have an additional attribute value constraint, thus a potential
solution is to apply attribute information to prune the search
space. The challenges of our problems are (1) how can we effi-
ciently prune unpromising vertices, and (2) how to maintain
the fair clique property during the search procedure. To tackle
the above challenges, wewill propose theWFCEnum algorithm
with a new colorful k-core based pruning technique for weak
fair clique enumeration; propose the SFCEnum algorithm with
a novel attribute-alternatively-selection strategy for enumerat-
ing all strong fair cliques; and propose a RFCRefineEnum algo-
rithm based on a weak fair clique refinement technique and a
RFCAlterEnum algorithm with an attribute-alternatively-selec-
tion strategy to enumerate all relative fair cliques. All the pro-
posed algorithms are able to correctly find all fair cliques and
significantly improve the efficiency compared to the baseline
enumeration algorithm.

3 WEAK FAIR CLIQUE ENUMERATION

In this section, we present the WFCEnum algorithm to enu-
merate all weak fair cliques. The key idea of WFCEnum is
that it first prunes the vertices that are not contained in any
weak fair clique based on a novel concept called colorful
k-core. Then, it performs a carefully-designed backtracking
search procedure to enumerate all results. Below, we first
introduce the concept of colorful k-core, followed by a heu-
ristic search order and theWFCEnum algorithm.
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3.1 The Colorful K-Core Pruning

Before introducing the colorful k-core based pruning tech-
nique, we first briefly review the problem of vertex coloring
for a graph. The goal of vertex coloring is to color the verti-
ces such that no two adjacent vertices have the same color
[23], [24] (See Fig. 1). Given a graph G ¼ ðV;EÞ, we denote
by colorðuÞ the color of a vertex u 2 V . Based on the vertex
coloring, we define the colorful degree of a vertex as follows.

Definition 4. (Colorful degree) Given an attributed graph G ¼
ðV;E;AÞ and an attribute value ai 2 Aval. The colorful-degree
of vertex u based on ai, denoted by Daiðu;GÞ, is the number of
colors of u’s neighbors whose attribute value is ai, i.e.,
Daiðu;GÞ ¼ jfcolorðvÞjv 2 NðuÞ; v:val ¼ aigj.
Clearly, each vertex u has An colorful degrees. Let

Dminðu;GÞ denotes the minimum colorful degree of a vertex
u, i.e., Dminðu;GÞ ¼ minfDaiðu;GÞjai 2 Avalg. We omit the
symbol G in Daiðu;GÞ and Dminðu;GÞ when the context is
clear. Below, we give the definition of colorful k-core.

Definition 5. (Colorful k-core) Given an attributed graph G ¼
ðV;E;AÞ and an integer k, a subgraph H ¼ ðVH;EH;AÞ of G
is a colorful k-core if: (1) for each vertex u 2 VH , Dminðu;HÞ �
k; (2) there is no subgraph H 0 � G that satisfies (1) and
H 	 H 0.

Based on Definition 5, we have the following lemma.

Lemma 1. Given an attributed graph G ¼ ðV;E;AÞ and a
parameter k, any weak fair clique must be contained in the col-
orful (k-1)-core of G.

Equipped with Lemma 1, we propose a novel algo-
rithm, called ColorfulCore, to compute the colorful-k-core
of G, which can be used to prune unpromising vertices
in the weak fair clique enumeration procedure. The
pseudo-code of ColorfulCore is shown in Algorithm 1.
The algorithm computes the colorful-k-core of G by itera-
tively peeling vertices from the remaining graph based
on their colorful degrees, which is a variant of the classic
core decomposition algorithm [25], [26] (lines 8-20). Spe-
cifically, it first performs greedy coloring on G which

colors vertices based on the order of degree [27], [28]
(line 1). Note that finding the optimal coloring is an NP-
hard problem [23], [24], thus we use a greedy algorithm
to compute a heuristic coloring which is sufficient for
defining the colorful k-core. A priority queue Q is
employed to maintain the vertices with smaller Dmin

which will be removed during the peeling procedure
(line 2). ColorfulCore computes the colorful degrees of all
vertices to initialize Q (lines 3-10). Mu records the num-
ber of u’s neighbors whose attribute values and colors
are the same. After that, the algorithm computes the col-
orful k-core of G by iteratively peeling vertices from the
remaining graph based on their colorful degrees (lines
11-20). Finally, ColorfulCore returns the remaining graph
Ĝ as the colorful k-core. Below, we analyze the complex-
ity of Algorithm 1.

Algorithm 1. ColorfulCore

Input: G ¼ ðV;E;AÞ, an integer k
Output: The colorful k-core Ĝ

1: Color all vertices by invoking a degree-based greedy color-
ing algorithm;

2: LetQ be a priority queue;Q  ;;
3: for u 2 V do
4: for v 2 NðuÞ do
5: ifMuðv:val; colorðvÞÞ ¼ 0 thenDv:valðuÞ++;
6: Muðv:val; colorðvÞÞ++;
7: DminðuÞ  minfDaiðuÞjai 2 Avalg;
8: for u 2 V do
9: ifDminðuÞ < k then
10: Q:pushðuÞ; Remove u from G;
11: while Q 6¼ ; do
12: u Q:popðÞ;
13: for v 2 NðuÞ do
14: if v is not removed then
15: Mvðu:val; colorðuÞÞ��;
16: ifMvðu:val; colorðuÞÞ � 0 then
17: Du:valðvÞ  Du:valðvÞ � 1;
18: DminðvÞ  minfDai ðvÞjai 2 Avalg;
19: ifDminðvÞ < k then
20: Q:pushðvÞ; Remove v from G;
21: The colorful k-core Ĝ the remaining graph of G;
22: return Ĝ;

Theorem 1. Algorithm 1 consumes OðE þ V Þ time using
OðV �An � colorÞ space, where color denotes the total num-
ber of colors.

3.2 The ColorfulK-Core Based Ordering

WFCEnum finds all weak fair cliques by performing a back-
tracking search procedure. Hence, the search order of verti-
ces is vital as the search spaces with various orderings are
significantly different. Below, we propose a heuristic order
based on the colorful k-core, called ColorOD, which can sig-
nificantly improve the performance of WFCEnum as con-
firmed in our experiments.

Consider a vertex u and its neighbor v with Dminðu;GÞ �
ðk� 1Þ > Dminðv;GÞ. According to Lemma 1, u may be con-
tained in a weak fair clique but v is impossible. Thus, we
can construct a smaller subgraph induced by u’s neighbors

Fig. 1. Running example.

Fig. 2. Running example: colorfulG.
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whose Dmin values are no less than Dminðu;GÞ to search
weak fair cliques. Inspired by this, we design a search order
denoted by ColorOD; and we propose an algorithm, called
CalColorOD, to calculate such an order. Similar to the idea
of ColorfulCore, CalColorOD iteratively removes a vertex
with the minimum Dmin from the remaining graph. The ver-
tices-removal ordering by this procedure is the ColorOD.

Algorithm 2. CalColorOD

Input: A connected graph G ¼ ðV;EÞ
Output: The ColorOD ordering O

1: Let B be an array with BðiÞ ¼ false; 1 � i � jV j;
2: O  ;;H  ;; cnt 0;
3: for u 2 V do
4: CalculateDminðuÞ as lines 4-7 in Algorithm 1;
5: H:pushðu;DminðuÞÞ;
6: whileH 6¼ ; do
7: ðu;DminðuÞÞ  H:popðÞ;
8: O½u
 ¼ cnt; BðuÞ  true; cnt++;
9: for v 2 NðuÞ do
10: if BðvÞ ¼ false then
11: Mvðu:val; colorðuÞÞ��;
12: ifMvðu:val; colorðuÞÞ � 0 then
13: Du:valðvÞ��; dif  DminðvÞ �Du:valðvÞ;
14: if dif 6¼ 0 then
15: DminðvÞ  Du:valðvÞ;H:updateðv; difÞ;
16: return O;

Algorithm 2 outlines the pseudo-code of CalColorOD.
For each vertex u, we use OðuÞ to indicate the rank of u in
our order O. A heap-based structure H is employed to
maintain the vertices with their Dmin values, which always
pops out the pair ðu;DminðuÞÞ with minimum Dmin.
CalColorOD first calculates DminðuÞ for every vertex u and
pushes ðu;DminðuÞÞ into H (lines 3-5). Then, CalColorOD
iteratively pops out the vertex with minimum Dmin from H
and records its rank in O (lines 6-15). As a vertex is
removed, we maintain the Dmin values for its neighbors and
update H (lines 9-15). It is easy to check that the time and
space complexities of Algorithm 2 are the same as those of
Algorithm 1.

The reason why ColorOD works is that the search proce-
dure beginning with vertices that have low ranks in
ColorOD tends to be less possible to form weak fair cliques.
Note that the main searching time of the enumeration algo-
rithm is spent on the vertices that have a dense and large
neighborhood. ColorOD can guarantee that the unpromising
vertices are explored first, thus reducing the number of can-
didates of the vertices that have a dense and large
neighborhood.

3.3 The Weak Fair Clique Enumeration Algorithm

The main idea of WFCEnum is to prune the unpromising
vertices first, and then perform the backtracking procedure
to find all weak fair cliques. Unlike the traditional maximal
clique enumeration, WFCEnum is equipped with a colorful
k-core-based pruning rule and a carefully-designed
ColorOD ordering technique, which can significantly reduce
the search space. The pseudo-code of WFCEnum is outlined
in Algorithm 3.

Algorithm 3.WFCEnum

Input: G ¼ ðV;E;AÞ, an integer k
Output: The set of weak fair cliques Res

1: Res ;; R ;;X  ;; C  ;;
2: Ĝ ¼ ðV̂ ; ÊÞ  ColorfulCoreðG; k� 1Þ;
3: Initialize an array Bwith BðiÞ ¼ false; 1 � i � jV̂ j;
4: for u 2 V̂ do
5: if BðuÞ ¼ false then
6: C  ConnectedGraphðu;BÞ;
7: O  CalColorODðCÞ;
8: R ;;X  ;; BackTrackðR;C;X;OÞ;
9: return Res;
10: Procedure BackTrackðR;C;X;OÞ
11: if C ¼ ; andX ¼ ; then Res Res [R;
12: for u 2 C in non-descending ColorOD order do
13: R̂ R [ u; Ĉ  ;; flag false;
14: Let Ĉcnt; R̂cnt be the arrays of size An;
15: for v 2 C do
16: if v 2 NðuÞ and OðvÞ > OðuÞ then
17: Ĉ  Ĉ [ v; Ĉcntðv:valÞ++;
18: if jĈj þ jR̂j < k�An then continue;
19: for v 2 R̂ do R̂cntðv:valÞ++;
20: for ai 2 Aval do
21: if R̂cntðaiÞ þ ĈcntðaiÞ < k then
22: flag true; break;
23: if flag ¼ true then continue;
24: X̂  X \NðuÞ;
25: BackTrackðR̂; Ĉ; X̂;OÞ;
26: X  X [ u;

TheWFCEnum algorithm works as follows. It first initial-
izes four sets R, X, C, and Res (line 1). The set R represents
the currently-found clique which may be extended to a
weak fair clique. X is the set of vertices in which every ver-
tex can be used to expand the current clique R but has
already been visited in previous search paths. C is the can-
didate set that can be used to extend the current clique R in
which each vertex must be neighbors of all vertices in R.
After initialization, WFCEnum performs ColorfulCore to
prune the vertices that are definitely not contained in any
weak fair clique (line 2). The algorithm invokes the
BackTrack procedure to find all weak fair cliques in the
pruned graph Ĝ (lines 4-9). Note that Ĝ may have several
connected colorful ðk� 1Þ-cores, so BackTrack should be
performed on each connected component in Ĝ. An array B
is used to indicate whether a vertex u has been searched,
and it is initialized as false for each vertex. For an unvisited
vertex u, WFCEnum identifies the connected colorful-
ðk� 1Þ-core C containing u and sets B as true for all vertices
within C to denote that C will not be searched again (line 6).
WFCEnum then calls CalColorOD to derive the search order
ColorOD of vertices in C, and performs the BackTrack pro-
cedure on C to enumerate all weak fair cliques (lines 7-8).

The workflow of BackTrack is depicted in lines 10-26 of
Algorithm 3. It first identifies whether the current R is a weak
fair clique (line 11). R is an answer if and only if C ¼ ; and
X ¼ ;. C is empty means that no vertex can be added into R.
In addition, the set X must be empty, otherwise any vertex in
X can be added into R and makes R non-maximal. If R is not
a weak fair clique, we add each vertex u 2 C into R and start
the next iteration of BackTrack (lines 12-26). Note that each
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candidate in C is a neighbor of all vertices in R, therefore after
adding u intoR, C must be updated to keep out those vertices
that are not adjacent with u (lines 15-17). Here, we only con-
sider the vertices whose rank is larger than u’s rank to avoid
finding the same clique repeatedly. After obtaining the
updated sets Ĉ and R̂, if jĈj þ jR̂j < k�An holds,
BackTrack terminates as the sets cannot reach the minimum
size of a weak fair clique (line 18). On the other hand, we use
R̂cnt and Ĉcnt to denote the number of vertices whose attribute
value is ai in R̂ and Ĉ, respectively (line 17 and line 19). By
checking the count for each ai 2 Aval, we can quickly deter-
mine whether the current/next clique is promising. For any
ai 2 Aval, if R̂cntðaiÞ þ ĈcntðaiÞ < k holds, we cannot obtain a
weak fair clique even if we add the whole set C into R. This is
because the condition (1) of Definition 1 is not satisfied, thus
BackTrack terminates (lines 20-23). Otherwise, the procedure
derives the set X̂ by adding u’s neighbors into X, and then
performs the next iteration (lines 24-25). After exploring the
vertex u, BackTrack adds it intoX because u has already been
searched in the current search path and cannot be processed
in the following recursions (line 26).

4 STRONG FAIR CLIQUE ENUMERATION

In this section, we first develop an efficient strong fair clique
enumeration algorithm with a novel pruning technique for
the two-dimensional (2D) case, where the attributed graph
has only two types of attributes (i.e., jAnj ¼ 2). Then, we
will show how to extend our enumeration algorithm to han-
dle the high-dimensional case (jAnj > 2).

4.1 The Pruning Technique for 2D Case

Suppose that the attributed graph G ¼ ðV;E;AÞ has two
types of attributes, i.e., Aval ¼ fa1; a2g. The neighbors of a
vertex u can be divided into hu groups by coloring where
each group contains vertices with the same color. Clearly,
by the property of coloring, only one vertex can be selected
from a group to form a clique with u. Below, we give a new
definition of fairness degree of a vertex.

Definition 6. (Fairness degree) Given a colored attributed
graph G ¼ ðV;E;AÞ with Aval ¼ fa1; a2g, the fairness degree
of u, denoted by FDðuÞ, is the largest number of groups from
which we select vertices so that the number of vertices with a1
is the same as the number of vertices with a2.

By Definition 6, we can easily verify that the fairness
degree of a vertex u, i.e., FDðuÞ, is an upper bound of the
size of the strong fair clique containing u. Therefore, for any
vertex u, if FDðuÞ < 2� ðk� 1Þ, then u cannot be contained
in any strong fair clique, because any vertex in a strong fair
clique must have a fairness degree no less than 2� ðk� 1Þ
by Definition 2. As a consequence, we can safely prune the
vertex whose fairness degree is less than 2� ðk� 1Þ.

A remaining question is how can we efficiently compute
the fairness degree for a vertex u. Below, we develop an effi-
cient approach to answer this question.

Based on the attribute values, the hu color groups can
be divided into three categories: (1) OA1Group: is a
group that involves vertices of attribute a1 only; (2)
OA2Group: is a group that contains vertices of attribute
a2 only; (3) MixGroup: is a group that contains vertices of

both a1 and a2. Let c1, c2, and cm be the number of the
OA1Group groups, the OA2Group groups, and the
MixGroup groups respectively. Suppose without loss of
generality that c1 � c2. Then, if cm � ðc2 � c1Þ holds, we
can easily derive that FDðuÞ ¼ 2� ðcm þ c1Þ. Otherwise,
we have FDðuÞ ¼ 2� ððcm � ðc2 � c1ÞÞ=2þ c2Þ. Based on
these results, we can calculate the fairness degree for
each vertex by using the three quantities c1, c2, and cm.
The pseudo-code of our FairDegCal algorithm to com-
pute the fairness is given in lines 17-29 of Algorithm 4.

Algorithm 4. FairnessCore

Input: G ¼ ðV;E;AÞ, an integer k
Output: The reduced graph Ĝ

1: G ¼ ðV ;EÞ  ColorfulCoreðG; kÞ;
2: Let FD be an array of size jV j; LetQ be a queue;
3: for u 2 V do
4: for v 2 NðuÞ do
5: Groupðu; colorðvÞ; v:valÞ++;
6: FDðuÞ  FairDegCalðu;GroupÞ;
7: if FDðuÞ < 2� k then
8: Remove u from G; Q:pushðuÞ;
9: while Q 6¼ ; do
10: u Q:popðÞ;
11: for v 2 NðuÞ do
12: if v is removed then continue;
13: Groupðv; colorðuÞ; u:valÞ � �;
14: Calculate FDðvÞ and update Q as lines 6-8;
15: Ĝ the remaining graph of G;
16: return Ĝ;
17: Procedure FairDegCalðu;GroupÞ
18: c1  0; c2  0; cm  0;
19: for each color cr do
20: if Groupðu; cr; a1Þ � 1 and Groupðu; cr; a2Þ ¼ 0 then

c1  c1 þ 1;
21: if Groupðu; cr; a2Þ � 1 and Groupðu; cr; a1Þ ¼ 0 then

c2  c2 þ 1;
22: if Groupðu; cr; a1Þ � 1 and Groupðu; cr; a1Þ � 1 then

cm  cm þ 1;
23: if c1 � c2 then
24: if cm5ðc2 � c1Þ then

FDðuÞ  2� ððcm � ðc2 � c1ÞÞ=2þ c2Þ;
25: else FDðuÞ  2� ðcm þ c1Þ;
26: else
27: if cm5ðc1 � c2Þ then FDðuÞ  2� ððcm � ðc1 � c2ÞÞ=2þ c1);
28: else FDðuÞ  2� ðcm þ c2Þ;
29: return FDðuÞ;

With the fairness degree, we can iteratively prune the
vertices with fairness degrees smaller than 2� ðk� 1Þ.
Below, we introduce a concept called fairness k-core to char-
acterize the reduced subgraph after iteratively peeling the
unqualified vertices.

Definition 7. (fairness k-core) Given an attributed graph G ¼
ðV;E;AÞ with Aval ¼ fa1; a2g and an integer k, a subgraph
H ¼ ðVH;EH;AÞ of G is a fairness k-core if: (1) for each u 2
VH , FDðuÞ � 2k; (2) there is no subgraphH 0 � G that satisfies
(1) andH 	 H 0.

By Definition 7, we can show that any strong fair clique
must be contained in the fairness k-core.
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Lemma 2. Given an attributed graph G ¼ ðV;E;AÞ with Aval ¼
fa1; a2g and a parameter k, any strong fair clique must be con-
tained in the fairness ðk� 1Þ-core of G.

Similar to the colorful k-core computation algorithm, we
can also devise a peeling algorithm to compute the fairness
k-core by iteratively removing the vertices that have fairness
degrees smaller than 2k. The pseudo-code of our algorithm
is outlined in Algorithm 4. Note that a strong fair clique is
always contained in a weak fair clique, thus we can first
invoke ColorfulCore to prune vertices that are definitely not
included in the weak fair cliques before computing the fair-
ness k-core of G (line 1).

Theorem 2. Algorithm 4 consumes OððE þ V Þ � colorÞ time
using OðV � colorÞ space.
Fairness k-Core Ordering. Similar to the ColorOD, we

can derive an ordering based on the fairness k-core, called
FairOD, for strong fair clique enumeration. In particular,
FairOD is derived by iteratively removing the vertex with
the minimum fairness degree which is very similar to the
computational procedure of ColorOD. We omit the details
for brevity.

4.2 The Enumeration Algorithm for 2D Case

Armed with the fairness k-core based pruning technique
and the FairOD ordering, we propose the SFCEnum algo-
rithm which alternatively picks a vertex of a specific attri-
bute in the backtracking procedure to enumerate all strong
fair cliques. The SFCEnum is shown in Algorithm 5. We use
R to represent the currently-found clique and C to denote
the candidate set. Similar to WFCEnum, SFCEnum first
applies FairnessCore to prune the vertices that are defi-
nitely not contained in strong fair cliques (line 2) and then
performs the StrongBackTrack procedure for each con-
nected fairness ðk� 1Þ-core in Ĝ to find all results (lines 4-8).

The pseudo-code of StrongBackTrack is outlined in lines
10-27 of Algorithm 5. Since a strong fair clique requires that
the numbers of vertices for each attribute ai are exactly the
same, we develop a novel attribute-alternatively-selection
mechanism to select vertices in each iteration. That is,
StrongBackTrack admits an input parameter af, which is
initialized to a0 (line 8), to indicate the attribute value of the
vertices to be selected in the current iteration. In the next
iteration, we pick the vertices with the attribute value afþ1
to construct strong fair cliques (line 27). StrongBackTrack
divides the candidates in C into An sets, where the attribute
values of vertices in each set are the same, i.e., CAðaiÞ ¼
fuju 2 C; u:val ¼ aig (line 14). For each candidate u in
CAðafÞ, we pick one vertex at a time as a part of the cur-
rently-found clique and update the candidate set based on
the FairOD ordering (lines 16-27).

After adding u into the current clique, we can
combine the set R̂ and Ĉ to determine whether to call
StrongBackTrack for a more in-depth search (lines 16-27).
Specifically, we classify the candidates in Ĉ according to
their attribute values and record amin as the attribute value
with the minimum number of vertices (denoted by cmin)
(line 20). Note that if there are multiple attribute values sat-
ifying jĈAðaiÞj ¼ cmin, we pick ai with the largest i as amin.
Clearly, cmin determines how large a strong fair clique can

be. We use Rc to denote the largest size of possible strong
fair cliques. If jR̂j%An ¼ 0, the numbers of vertices with
various attribute values are the same in the current set R̂,
thus there are at most cmin �An vertices can be added into
R̂, and further we have Rc ¼ cmin �An þ jR̂j (line 21). Oth-
erwise, we calculate Rc and try to search a larger clique
(lines 22-27). By the attribute-alternatively-selection strat-
egy, in the current iteration with af, the number of vertices
with attribute value af (af 2 fa0; :::; afg) is always one
more than that of vertices with ab (ab 2 fafþ1; :::; an�1g) in
R. If amin ¼ af , we can add one vertex, for each ab, into R
to obtain a clique with size ðjR̂j=An þ 1Þ �An, which is
denoted by RM . Note that there are still cmin �An vertices
that may form a larger clique with RM . Therefore, we cal-
culate Rc as shown in line 24. Similarly, when amin ¼ ab,
we have at most ðcmin � 1Þ �An vertices that may add into
RM to construct a strong fair clique with size Rc (line 25).
After calculating Rc, we can terminate the search proce-
dure early if Rc < k�An, because it violates the definition
of strong fair clique in this case. Otherwise, we recursively
perform StrongBackTrack with the attribute value afþ1
(line 27).

Algorithm 5. SFCEnum

Input: G ¼ ðV;E;AÞ, an integer k
Output: The set of all strong fair cliques Res

1: Res ;; R ;; C  ;;
2: Ĝ ¼ ðV̂ ; ÊÞ  FairnessCoreðG; k� 1Þ;
3: Initialize an array Bwith BðiÞ ¼ false; 1 � i � jV̂ j;
4: for u 2 V̂ do
5: if BðuÞ ¼ false then
6: C  ConnectedGraphðu;BÞ;
7: O  FairOD (C);
8: R ;; C  ;; StrongBackTrackðR;C; a0;OÞ;
9: return Res;
10: Procedure StrongBackTrackðR;C; af;OÞ
11: if jRj%An ¼ 0 and jRj � k�An then
12: if IsMaximalðCÞ then
13: Res Res [R; return;
14: for u 2 C then CAðu:valÞ  CAðu:valÞ [ u;
15: for u 2 CAðafÞ do
16: R̂ R [ u;
17: for v 2 C do
18: if v 2 NðuÞ and OðvÞ > OðuÞ then
19: Ĉ  Ĉ [ v; ĈAðv:valÞ  ĈAðv:valÞ [ v;
20: cmin  minðjĈAðaiÞjÞ; amin  argminai jĈAðaiÞj;
21: if jR̂j%An ¼ 0 then Rc  cmin �An þ jR̂j;
22: else
23: if amin 2 fa0; a1; :::; afg then
24: Rc  cmin �An þ ðjR̂j=An þ 1Þ �An;
25: else Rc  ðcmin � 1Þ �An þ ðjR̂j=An þ 1Þ �An;
26: if Rc < k�An then continue;
27: StrongBackTrackðR̂; Ĉ; afþ1;O);

Maximality Checking. The results of all traditional maximal
cliques and our weak fair cliques lie in the leaves of the back-
tracking enumeration tree. We can check whether a weak fair
clique is found by C ¼ ; and X ¼ ; (see line 11 of Algorithm
3). However, such a maximality checking method cannot be
used for strong fair cliques. The reasons are twofold: (1) an
empty candidate set C does not mean that we find a strong

11374 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:48:22 UTC from IEEE Xplore.  Restrictions apply. 



fair clique because the number of vertices in R corresponding
to each attribute value may not be the same; (2) even if X is
not empty, R can be a strong fair clique. That is to say, strong
fair cliques can appear in the intermediate nodes of the back-
tracking enumeration tree. Therefore, we need to develop new
solution to check the maximality for strong fair cliques. We
propose a maximality checking technique as follows.

Algorithm 6. IsMaximalðCÞ
1: if jCj < An then return true;
2: else
3: for each ai 2 Aval do
4: Ci  fuju 2 C; u:val ¼ aig;
5: if jCij ¼ 0 return true;
6: Record C0;
7: for each ai 2 fAval � fa0gg do
8: SwapRecord ;;
9: for vi 2 Ci do
10: for r 2 Record do
11: if vi is a neighbor of all vertices in r then
12: SwapRecord SwapRecord [ fr [ vig;
13: Record SwapRecord;
14: if Record 6¼ ; return false;

Once the StrongBackTrack procedure finds a clique whose
size is equal to k0 �An with k0 � k, we need to check the maxi-
mality according to Definition 2. Since the vertices in C are
neighbors of all vertices in R, if we find any clique in C with
every attribute,R is definitely not a strong fair clique as it viola-
tes the constraint (3) in Definition 2. Based on this, we propose
a verification method, called IsMaximal, which is shown in
Algorithm 6. Specifically, if the size of C is less than An, which
means adding all vertices in C will destroy the fairness prop-
erty of R, R is maximal and thus the algorithm returns true
(line 1). Otherwise, we need to explore the common neighbors
to find if there exist cliques with size at least An þ jRj that are
also strong fair cliques. The IsMaximal algorithmusesCi to rep-
resent the vertices in C with the attribute value ai. Clearly, if
jCij ¼ 0 holds for an arbitrary attribute ai, the attribute con-
straintwill not be satisfied and the procedure outputs true, indi-
cating R is maximal (lines 3-5). Otherwise, StrongBackTrack
tries to construct cliques from C. The variables Record and
SwapRecord are used to maintain the current partial cliques.
Finally, ifRecord is not empty, we can find a clique with size at
leastAn þ jRj. In such case,R is not a strong fair clique and the
StrongBackTrack procedure returns false (lines 6-14).

4.3 Handling the High-Dimensional Case

We note that the idea of the fairness degree based pruning
rule is not easy to extend to the high-dimensional case,
because there may be 2An � 1�An MixGroups in the worst
case. Therefore, it is very difficult to compute the exact fair-
ness degree for each vertex when An > 2. To circumvent
this problem, we propose a heuristic greedy algorithm to
calculate an approximation of the fairness degree for each
vertex u, instead of deriving the exact fairness degree.

Specifically, we let GDðuÞ be the approximate fairness
degree computed by our greedy algorithm. By coloring, the
neighbors of a vertex u can be classified into hu color
groups. For each color cr, we have a group, denoted by

GroupðcrÞ. For a color group GroupðcrÞ, we let SðcrÞ be the
set of attributes of the vertices in GroupðcrÞ. For an attribute
ai, if ai 2 SðcrÞ and jSðcrÞj ¼ 1 hold, we know that the group
GroupðcrÞ only contains the vertices with the attribute ai.
For each attribute ai, we maintain a counter cntðaiÞ to record
the number of color groups that only contain vertices with
ai. Clearly, jSðcrÞj > 1 indicates a mix group GroupðcrÞ.
The greedy algorithm greedily assigns GroupðcrÞ to the
attribute with the minimum number of color groups. In
other words, the algorithm increases the counter of am by 1
where am ¼ argminaj2SðcrÞcntðajÞ. Finally, GDðuÞ is obtained
by taking the minimum counter over all attributes, i.e.,
GDðuÞ ¼ minfcntðaiÞ; ai 2 Avalg.

It is easy to see that the approximate fairness degree
GDðuÞ of a vertex u is always no larger than the exact fair-
ness degree of u, thus it cannot be directly used to prune
vertices for strong fair clique enumeration. This is because
GDðuÞ is not an upper bound of the size of the strong fair
cliques containing u. However, we can use the approximate
fairness degrees to derive a good heuristic ordering,
because the vertices with high exact fairness degrees tend to
have high approximate fairness degrees. Such a heuristic
ordering can be applied to reduce the search space for
strong fair clique enumeration, as confirmed in our experi-
ments. Specifically, to obtain the heuristic ordering denoted
by HeurOD, we can iteratively delete the vertex with the
minimum GD (similar to the procedure of computing
ColorOD and FairOD). The pseudo-code of our greedy algo-
rithm to generate HeurOD is given in Algorithm 7.

Algorithm 7. CalHeurOrd

Input: A connected graph G ¼ ðV;EÞ
Output: The HeurOD ordering O

1: O  ;;Q  ;;
2: Let B be an array with BðiÞ ¼ false; 1 � i � jV j;
3: for u 2 V do
4: for v 2 NðuÞ do
5: SuðcolorðvÞ; v:valÞ  SuðcolorðvÞ; v:valÞ þ 1;
6: Let cnt be an array with cnt(i) = 0, 0 � i < An;
7: for each color cr do
8: for ai 2 Aval do
9: if Suðcr; aiÞ � 1 then
10: am ¼ argminai2Suðcr;aiÞ cntðaiÞ;
11: cntðamÞ  cntðamÞ þ 1;
12: GDðuÞ ¼ minfcntðaiÞ; ai 2 Avalg;
13: Q:pushðu;GDðuÞÞ;
14: while Q 6¼ ; do
15: u Q:popðÞ; O:pushðuÞ; BðuÞ  true;
16: for v 2 NðuÞ do
17: if BðvÞ ¼ false then
18: SvðcolorðuÞ; u:valÞ  SvðcolorðuÞ; u:valÞ � 1;
19: Calculate GDðvÞ and updateQ as lines 6-13;
20: return O;

Theorem 3. Algorithm 7 takes OððV þ EÞ �An � colorÞ using
OðV �An � colorÞ space.‘
The Enumeration Algorithm. Algorithm 5 can be easily

extended to handle the high-dimensional case. Note that
FairnessCore and FairOD in Algorithm 5 do not work for the
high-dimensional case. However, we can use ColorfulCore
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(Algorithm 1), which is designed for pruning unpromising
vertices in weak fair clique enumeration, to reduce search
space because a strong fair clique is always contained in a
weak fair clique. In addition, we use the ordering HeurOD
computed by Algorithm 7 for strong fair clique enumeration
with An > 2. Clearly, the StrongBackTrack procedure with
the attribute-alternatively-selection strategy in Algorithm 5
can be directly applied to handle the An > 2 case. Therefore,
we only need to slightly modify Algorithm 5 to enumerate
strong fair cliques for the high-dimensional attributes. Specifi-
cally, in Algorithm 5, we use ColorfulCore instead of
FairnessCore to prune the unpromising vertices (line 2), and
invoke Algorithm 7 to obtain the HeurOD ordering to reduce
the search space (line 7).

5 RELATIVE FAIR CLIQUE ENUMERATION

In this section, we first develop an enhanced pruning technique
for the case of two-dimensional (2D) attributes to prune the
unpromising vertices in the original graph. Then, two search
frameworks with different strategies, namely, RFCRefineEnum
and RFCAlterEnum, are proposed to enumerate relative fair cli-
ques for both 2D and high-dimensional attributes.

5.1 The Enhanced Pruning Technique for 2D Case

Suppose that the attributed graph G ¼ ðV;E;AÞ with Aval ¼
fa1; a2g, and we also divide the neighbors of a vertex u into hu

groupswhere each group contains verticeswith the same color.
Below,we define the enhanced colorful degree as follows.

Definition 8. (Enhanced colorful degree) Given a colored
attributed graph G ¼ ðV;E;AÞ with Aval ¼ fa1; a2g, the
enhanced colorful degree of u, denoted by EDðuÞ, is the mini-
mum number of groups that assigned to either to attribute a1
or to attribute a2.

For a vertex u, as only one vertex in a group can be selected
to form a clique with u, the number of groups assigned to an
arbitrary attribute is no greater than the number of u’s neigh-
bors with this attribute. And further, the enhanced colorful
degree is no larger than the minimum colorful degree, thus it
determines a tighter upper bound of the size of the relative
fair clique containing u. By Definition 3, the enhanced colorful
degree of any vertex in a relative fair clique is no less than ðk�
1Þ. Consequently, we can safely prune the vertex whose
enhanced colorful degree is less than ðk� 1Þ. Below, we intro-
duce an algorithm, called EnhancedColCal, to compute the
enhanced colorful degree for a vertex u.

The pseudo-code of EnhancedColCal is outlined in Algo-
rithm 8. Similar to FairDegCal, we divide hu color groups
into three categories, i.e., OA1Group, OA2Group and
MixGroup, and denote the number of the groups in these
three categories by c1, c2, and cm. The main idea of
EnhancedColCal is to assign each color group in the
MixGroup to OA1Group or OA2Group when c1 or c2 is less
than k. We take c1 as an example. In the case of c1 < k, if
cm � k� c1 holds, we assign k� c1 groups in MixGroup to
OA1Group (line 6); otherwise, we assign all groups in
MixGroup to OA1Group (line 8). For the groups in
OA2Group with attribute a2, we also use cm to expand c2 as
we expand c1 (lines 9-13). Finally, we can easily derive that
EDðuÞ ¼ min fc1; c2g.

Based on the enhanced colorful degree, we define the
enhanced colorful k-core in the following.

Definition 9. (Enhanced colorful k-core) Given an attributed
graph G ¼ ðV;E;AÞ with Aval ¼ fa1; a2g and an integer k, a
subgraph H ¼ ðVH;EH;AÞ of G is an enhanced colorful k-core
if: (1) for each u 2 VH , EDðuÞ � k; (2) there is no subgraph
H 0 � G that satisfies (1) andH 	 H 0.

By Definition 9, we hold the following lemma, that is, any
relative fair clique must be contained in the enhanced color-
ful ðk� 1Þ-core.

Algorithm 8. EnhancedColCal

1: Procedure EnhancedColCalðu;Group; kÞ
2: c1  0; c2  0; cm  0;
3: Calculate c1; c2; cm as lines 19-22 of Algorithm 4;
4: if c1 < k then
5: if cm � ðk� c1Þ then
6: c1  k; cm  cm � ðk� c1Þ;
7: else
8: c1  c1 þ cm; cm  0;
9: if c2 < k then
10: if cm � ðk� c2Þ then
11: c2  k; cm  cm � ðk� c2Þ;
12: else
13: c2  c2 þ cm; cm  0;
14: EDðuÞ  min fc1; c2g;
15: return EDðuÞ;

Lemma 3. Given an attributed graph G ¼ ðV;E;AÞ with Aval ¼
fa1; a2g and a parameter k, any relative fair clique must be con-
tained in the enhanced colorful ðk� 1Þ-core of G.

We also derive a peeling algorithm, i.e., EnhancedCore, to
compute the enhanced colorful k-core. The pseudo-code of
EnhancedCore is similar to that of ColorfulCore (Algorithm 4)
and we only need to make slightly modifying as follows. Spe-
cifically, in line 6, we perform the procedure EnhancedColCal
(Algorithm 8) instead of FairDegCal to calculate the enhanced
colorful degrees of all vertices. In line 7, we modify the condi-
tion to be EDðuÞ < k to add the vertices with initial enhanced
colorful degrees less than k to the queue Q. Then, we itera-
tively remove the vertices with the enhanced colorful degrees
less than k, and maintain the enhanced colorful degrees for
their neighbors and the queue Q (line 14). Due to the space
limitation, we omit the pseudo-code of EnhancedCore.

Example 2. Reconsider the attributed graph in Fig. 2. Sup-
pose that we search all relative fair cliques with k ¼ 4. We
need to calculate 3-colorful core or 3-enhanced colorful
core first. Take vertex v9 as an example. v9 has four neigh-
bors with attribute a, i.e., v10; v11; v13 and v14, and three
neighbors with attribute b, i.e., v5; v6 and v12. Based on Def-
inition 4, we have Daðv9Þ ¼ 4 and Dbðv9Þ ¼ 3, and further
Dminðv9Þ ¼ Dbðv9Þ ¼ 3. Due to Dminðv9Þ ¼ 3, v9 cannot be
removed according to the colorful core pruning technique
(Definition 5). However, v9 is not contained in any 4-rela-
tive fair clique. This is because v6 with attribute b and v10
with attribute a have the same color (green), that is, there
are no edge between them, thus v6 and v10 cannot coexist
in a clique. Analogously, the neighbors colored yellow, i.e.,
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v12 with attribute b and v14 with attribute a, also cannot
form a clique. While considering the enhanced colorful
degree, we have EDðu9Þ ¼ 2. Clearly, EDðu9Þ ¼ 2 < 3,
thus EnhancedCore can safely remove v9 from G. Hence,
the enhanced colorful degree has a stronger pruning effect
than the colorful degree. EnhancedCore repeatedly removes
vertices until all the remaining vertices satisfying EDð�Þ �
3. Finally,we can obtain an enhanced colorful 3-core induced
by fv1; v2; v3; v4; v5; v6; v7; v8g.

Theorem 4. The EnhancedCore algorithm consumes OððE þ
V Þ � colorÞ time using OðV � colorÞ space.
Remark. Note that the EnhancedCore pruning technique

is more efficient than ColorfulCore, because the enhanced
colorful degree provides a tighter upper bound on the mini-
mum number of neighbors of u for arbitrary attributes
benefitting from the property of graph coloring. In addition,
the EnhancedCore can work on all proposed fairness-aware
clique models in the case of 2D attributes. Specifically, in
weak fair clique enumeration, we can use EnhancedCore
instead of ColorfulCore to achieve a stronger pruning effect
in line 2 of Algorithm 3. In Algorithm 4 for strong fair clique
enumeration, we can also apply EnhancedCore in line 1.
For the relative fair clique search, we will introduce the enu-
meration algorithms in the following subsections which are
also equipped with the EnhancedCore pruning technique.

Algorithm 9. RFCRefineEnum

Input: G ¼ ðV;E;AÞ, two integers k and d

Output: The set of relative fair cliques Res
1: Res ;; C  ;;
2: if d ¼ 0 then Res SFCEnumðG; kÞ; return Res;
3: if jAvalj ¼ 2 then Ĝ ¼ ðV̂ ; ÊÞ  EnhancedCoreðG; k� 1Þ;
4: else Ĝ ¼ ðV̂ ; ÊÞ  ColorfulCoreðG; k� 1Þ;
5: C  WFCEnumðĜ; kÞ;
6: for Ci 2 C do
7: for ai 2 Aval do
8: V ðaiÞ  ;; CntðaiÞ  0;
9: for u 2 Ci do
10: Cntðu:valÞ++; V ðu:valÞ  V ðu:valÞ [ fug;
11: amin  argminai2Aval

CntðaiÞ; amax  amin þ d;
12: LA  fai 2 AvaljCntðaiÞ > amaxg;
13: if LA ¼ ; then
14: Res Ci; continue;
15: VðLAÞ  ;; VðLAÞ  VðLAÞ [ fV ðaiÞjai 2 LAg;
16: VðCP Þ  ;; VðCP Þ  VðCP Þ [ fV ðaiÞjai =2 LAg;
17: Let as be the first attribute element in LA;
18: DeepRFCRefineðVðCP Þ;VðLAÞ; LA; amax; Res; as; 0Þ;
19: return Res;
20: Procedure DeepRFCRefineðC;VðLAÞ; LA; amax;Res; ac; cntcÞ
21: if ac is the last attribute element in LA then
22: Res Res [ C; return;
23: for u 2 V ðacÞ do
24: C  C [ fug; V ðacÞ  V ðacÞ � fug;
25: if cntc þ 1 < amax then
26: DeepRFCRefineðC;VðLAÞ; LA; amax; Res; ac; cntc þ 1Þ;
27: else
28: anc  the next attribute element of ac in LA;
29: DeepRFCRefineðC;VðLAÞ; LA; amax; Res; anc; 0Þ;
30: C  C � fug; V ðacÞ  V ðacÞ [ fug;

5.2 The RFCRefineEnum Algorithm

Reviewing Definition 3, a relative fair clique must be con-
tained in weak fair cliques. Therefore, a feasible idea is to
find all the weak fair cliques, and then enumerate the rela-
tive fair cliques contained in them. Following this idea, we
propose an algorithm, called RFCRefineEnum, which is
shown as Algorithm 9.

The RFCRefineEnum algorithm works as follows. If d ¼ 0,
it performs SFCEnum to find all relative fair cliques since the
relative fair clique model is equivalent to the strong fair clique
model in this case (line 2); otherwise, theRFCRefineEnum per-
forms EnhancedCore or ColorfulCore to prune the original
graph for 2D or high-dimensional attributes (lines 3-4). Then it
invokesWFCEnum to find all weak fair cliques and refines rel-
ative fair cliques contained in them (lines 5-18). For each weak
fair clique Ci, the RFCRefineEnum computes the number of
vertices CntðaiÞ for each attribute ai, and identifies the mini-
mum CntðaiÞ as amin. Based on amin and d, at most how many
vertices of each attribute has in a relative fairness clique is
determined, which we denoted by amax (lines 7-11). The algo-
rithm then collects those attributes with the number of vertices
greater than amax into LA, which we call the lacking attribute
set (line 12). Clearly, if LA is empty, the current weak fair cli-
que is a ðk; dÞ-relative fair clique, and we add it into the result
set Res (line 14). In the negative case, RFCRefineEnum refines
the vertices with lacking attributes and non-lack attributes
into VðLAÞ and VðCP Þ, respectively (lines 15-16). It then selects
a lacking attribute as 2 LA and performs the DeepRFCRefine
procedure to expand the partial clique induced by VðCP Þ to
search all relative fair cliques (lines 17-18).

Algorithm 10. RFCAlterEnum

Input: G ¼ ðV;E;AÞ, two integers k and d

Output: The set of relative fair cliques Res
1: Res ;; R ;;X  ;; C  ;;
2: if d ¼ 0 then Res SFCEnumðG; kÞ; return Res;
3: if jAvalj ¼ 2 then Ĝ ¼ ðV̂ ; ÊÞ  EnhancedCoreðG; k� 1Þ;
4: else Ĝ ¼ ðV̂ ; ÊÞ  ColorfulCoreðG; k� 1Þ;
5: Initialize an array Bwith BðiÞ ¼ false; 1 � i � jV̂ j;
6: for u 2 V̂ do
7: if BðuÞ ¼ false then
8: C  ConnectedGraphðu;BÞ;
9: O  CalColorODðCÞ;
10: R ;;X  ;;
11: DeepRFCAlterðR;C;X;O; a0;�1Þ;
12: return Res;

In the DeepRFCRefine procedure, there are two
important parameters: ac and cntc. The parameter ac indi-
cates that the current round needs to pick a vertex with
the lacking attribute ac into the partial clique C. And cntc
is used to record the number of vertices with the lacking
attribute ac. In each recursion of DeepRFCRefine, it tries
to add each vertex u with attribute ac to C to perform a
deeper search for relative fair clique enumeration (lines
23-30). If cntc þ 1 < amax, that means the number of verti-
ces with ac in C has not yet reached amax, thus we perform
the DeepRFCRefine with the parameters: ac and cntc þ 1
(line 26). On the other hand, once the number of vertices
with ac in C is up to amax, we invoke the DeepRFCRefine
to select vertices for the next lacking attribute anc with
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cntc equals 0 (lines 28-29). When all lacking attributes in
LA are processed, a relative fair clique C is found and
the DeepRFCRefine adds it into the result set Res
(lines 20-21).

5.3 The RFCAlterEnum Algorithm

The RFCRefineEnum algorithm is not very efficient for relative
fair clique enumeration because a relative fair clique may be
contained in many weak fair cliques, which causes a lot of
repeated enumeration calculation inRFCRefineEnum. To solve
this issue, we propose the RFCAlterEnum algorithm which
applies the attribute-alternative-selection search method in
SFCEnum to find all relative fair cliques.

Algorithm 11. DeepRFCAlter

1: Procedure DeepRFCAlterðR;C;X;O; af; amaxÞ
2: for u 2 C do CAðu:valÞ  CAðu:valÞ [ u;
3: for u 2 R do RAðu:valÞ  RAðu:valÞ [ u;
4: if jCAðafÞj ¼ 0 and amax ¼ �1 then
5: amin  jRAðafÞj;
6: amax  amin þ d;
7: for ai 2 Aval do
8: if jRAðaiÞj ¼ amax then C  C � CAðaiÞ; CAðaiÞ  ;;
9: if C ¼ ; then
10: isMaximal true;
11: ifX 6¼ ; then
12: amin  minai2Aval

jRAðaiÞj;
13: for u 2 X do
14: if u:val ¼ amin or jRAðu:valÞj þ 1 <¼ amax then
15: isMaximal false; break;
16: if isMaximal ¼ true then Res Res [R; return;
17: if CAðafÞ ¼ ; thenDeepRFCAlterðR;C;X;O; afþ1; amax);

return;
18: for u 2 CAðafÞ do
19: R̂ R [ u; Ĉ  ;; flag false;
20: for v 2 C do
21: if v 2 NðuÞ and OðvÞ > OðuÞ then
22: Ĉ  Ĉ [ v; Ĉcntðv:valÞ++;
23: if jĈj þ jR̂j < k �An then continue;
24: for v 2 R̂ do R̂cntðv:valÞ++;
25: for ai 2 Aval do
26: if R̂cntðaiÞ þ ĈcntðaiÞ < k then
27: flag true; break;
28: if flag ¼ true then continue;
29: X̂  X \NðuÞ;
30: DeepRFCAlterðR̂; Ĉ; X̂;O; afþ1; amax);
31: X  X [ u;

The RFCAlterEnum algorithm is outlined in Algorithm
10. Similar to WFCEnum and SFCEnum, R is the currently-
found clique and C is the candidate set that can be used to
extend R. All the relative fair cliques are stored in the set
Res. To avoid the repeated enumeration, we still use the
set X to maintain the vertices that can be used to expand
the current clique R but have already been visited in previ-
ous search paths. The RFCAlterEnum algorithm performs
SFCEnum directly to find all relative fair cliques for d ¼ 0
like the RFCRefineEnum (line 2). In other cases, it first
removes the vertices that are definitely not contained in
any relative fair clique with the pruning techniques. For
the graph G with two types of attributes, that is, jAvalj ¼ 2,

RFCAlterEnum performs EnhancedCore to prune the origi-
nal graph (line 3), and ColorfulCore is called for high-
dimensional attributes (line 4). Then, the RFCAlterEnum
alternatively selects a vertex of a specific attribute in each
backtracking round to enumerate all relative fair cliques,
i.e., the DeepRFCAlter procedure (lines 6-11).

The workflow of theDeepRFCAlter procedure is depicted
in Algorithm 11. The input parameter af is used to indicate
the attribute value of the vertices to be selected in the current
iteration. amax is the upper bound of the number of vertices
for an arbitrary attribute ai in the current search space, which
is initialized to �1 (line 11 in Algorithm 10). In each iteration
with attribute af, the DeepRFCAlter procedure first divides
the vertices in the candidate set C and the current partial cli-
que R into An collections according to their attributes,
respectively (lines 2-3). For the specified af, if the current
candidate set has no vertex with af and amax is equal to the
initial�1, thatmeans the lower bound of the number of verti-
ces for an arbitrary attribute ai is determined. And further,
amax is also fixed based on the difference threshold d (lines 4-
5). The DeepRFCAlter then identifies whether the number of
vertices for attribute ai 2 Aval in the current clique R has
reached amax. In the affirmative case, adding any vertex with
ai to R would violate the definition of a relative fair clique,
and thus the procedure removes all vertices with ai from the
candidate setC (lines 6-7). Since af is specified for the current
round, for each candidate u in CAðafÞ, the DeepRFCAlter
picks one vertex at a time to add to the currently-found cli-
que and call itself to perform a deeper search for the next
attribute afþ1 (lines 18-31). Note that if CAðafÞ is empty, the
DeepRFCAlter directly invokes a recursion by specifying the
attribute afþ1 (lines 16-17).

Maximality checking. Once the candidate set C is empty, we
check the maximality of R. As previously mentioned, the ver-
tices in X can expand R but have already been visited in pre-
vious search paths. Thus, we check the maximality by adding
each vertex in X to R (lines 8-15). A variable isMaximal, ini-
tialized as true, is used to indicate whether R is a relative fair
clique (line 9). Consider a vertex u 2 X, the maximality check-
ing is discussed in two aspects according to whether the attri-
bute of u is the attribute with the least number of vertices in R
(line 13). In the case of u:val ¼ amin, adding u can increase
amin by 1 to obtain a larger relative fair clique. Therefore, R is
not an answer because it does not satisfy maximality, i.e., the
condition (3) in Definition 3. On the other hand, that is, u:val 6¼
amin, the DeepRFCAlter procedure identifies whether the
number of vertices in R with the attribute u:val is up to amax.
If no, adding u into R still satisfies the definition of a relative
fair clique, thus R is not an answer due to the violation of the
maximality. Once there is a vertex u that can make R break
the maximality, we set the variable isMaximal to false. After
checking all the vertices in the set X, the DeepRFCAlter adds
R into the answer setRes if isMaximal equals true.

6 EXPERIMENTS

6.1 Experimental Setup

We implement WFCEnum (Algorithm 3) for weak fair clique
enumeration. For strong fair clique enumeration, we imple-
ment SFCEnum (Algorithm 5) equipped with 1) the pruning
technique FairnessCore (Algorithm 4) and the ordering
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FairOD for the 2D case; and 2) the pruning technique
ColorfulCore and the heuristic orderingHeurOD calculated by
Algorithm 7 for the high-dimensional case. For relative fair
clique enumeration, we implement RFCRefineEnum (Algo-
rithm 9) and RFCAlterEnum (Algorithm 10) equipped with
the pruning techniques EnhancedCore and ColorfulCore for
2D and high-dimensional cases. Since there is no existing
algorithm that can be directly used to enumerate fairness-
aware cliques,we implement three baseline algorithms, called
BaseWeak,BaseStrong andBaseRelative. For theweak (rela-
tive) fair clique enumeration, BaseWeak (BaseRelative) first
finds all maximal cliques using the state-of-the-art Bron-Ker-
bosch algorithm with pivoting technique [29], [30], and then
filters them based on attribute constraint to identify weak (rela-
tive) fair cliques. For the strong fair clique enumeration,
BaseStrong enumerates all cliqueswith size larger than k�An,
and then selects the strong fair cliques among them based on
the attribute and maximality constraints. In addition, we also
introduce two different basic orderings for our fairness-aware
clique enumeration algorithms. The first ordering, called
BfsOD, is obtained by performing breadth-first search (BFS) to
explore the graph (i.e., the BFS visiting ordering of vertices);
and the second ordering, called VidOD, is obtained by sorting
the vertices based on the vertices’ IDs. We compare the
BaseWeak (BaseStrong) with theWFCEnum (SFCEnum) algo-
rithms equipped with different orderings, i.e., BfsOD, VidOD
and our proposed orderings. All algorithms are implemented
in C++. We conduct all experiments on a PC with a 2.10GHz
Inter Xeon CPU and 256GB memory. We set the time limit for
all algorithms to 3 hours, and use the symbol “INF” to denote
that the algorithm cannot terminatewithin 3 hours.

Datasets. We make use of six real-world graphs to evalu-
ate the efficiency of the proposed algorithms. Table 1 sum-
marizes the statistics of the datasets in our experiments.
Aminer is a collaboration network,WikiTalk is a communica-
tion network and the others are social networks. The dataset
Aminer is an attributed graph with 2-dimensional attribute
to indicate the gender of a scholar, which can be down-
loaded from https://github.com/SotirisTsioutsiouliklis/
FairLaR/blob/master/Datasets/. And the other datasets
are non-attributed graphs and can be downloaded from
networkrepository.com/ and snap.stanford.edu. For these
non-attributed graphs, we randomly assign an attribute to
each vertex with roughly equal probability (i.e., 1=An) to
generate attributed graphs to evaluate the efficiency of all
algorithms.

Parameters. There are two parameters in our weak fair cli-
que enumeration and strong fair clique enumeration algo-
rithms: k and d ¼ An. The parameter k is the threshold for

fair cliques and d is the number of attribute values (i.e., the
attribute dimension). For the relative fair clique search algo-
rithms, there is an extra parameter d which is the maximum
difference in the number of vertices of the attribute in addi-
tion to k and d. Since different datasets have various scales,
the parameter k is set within different integers. For Aminer,
k is chosen from the interval ½9; 13
 with a default value of
k ¼ 11. For Themarker, k is selected from the interval ½7; 11

with a default value of k ¼ 4. For Pokec, k is chosen from
the interval ½9; 13
 with a default value of k ¼ 11. For the
other datasets, k is chosen from the interval ½9; 13
 with a
default value k ¼ 5. The parameter d is chosen from the
interval ½2; 6
 with a default value of d ¼ 2. For the parame-
ter d, if d ¼ 0, the relative fair clique model degrades to the
strong fair clique, and the proposed relative fair clique enu-
meration algorithms will invoke SFCEnum to find all rela-
tive/strong fair cliques. Thus, we choose d from the interval
½1; 5
 with a default value of d ¼ 3 to evaluate the relative
fair clique enumeration algorithms. When varying a param-
eter, the values of the other parameters are set to their
default values. In particular, for Pokec, we set the default
value of k to 5 for the experiments with varying d.

6.2 Efficiency Testing

Evaluation of the pruning techniques. For the 2D case (i.e., d ¼ 2),
both ColorfulCore and EnhancedCore can be used to reduce the
graph size in WFCEnum, RFCRefineEnum and RFCAlterEnum
algorithms. And ColorfulCore and FairnessCore can be used to
reduce the graph size in the SFCEnum algorithm. In this experi-
ment, we evaluate these pruning techniques by comparing the
number of remaining vertices after pruning with varying k. The
results are depicted in Figs. 3a, 3b, 3c, 3d, and 3e.

As can be seen from Fig. 3, in WFCEnum, RFCRefineEnum
and RFCAlterEnum, both ColorfulCore and EnhancedCore can
significantly reduce the number of vertices compared to the
original graph as expected. Moreover, the number of remain-
ing vertices decreases as k increases. For example, in Slashdot
with k ¼ 9, ColorfulCore reduces the number of vertices from
82,169 to 3,985; and EnhancedCore further reduces the number
of vertices to 1,330. In general, EnhancedCore consistently out-
performs ColorfulCore in terms of the pruning performance,
especially for relatively small k values. When k goes larger, the
pruning effect of ColorfulCore is slightly worse than that of
EnhancedCore. This is because ColorfulCore can also prune a
large number of vertices for a large k; for the SFCEnum algo-
rithm, we can find that FairnessCore substantially reduces
the number of vertices compared to ColorfulCore and the
original graph. For instance, in Flixster with k ¼ 9, the number
of remaining vertices after applying ColorfulCore and
FairnessCore is 15,258 and 10,602 respectively, while there are
2,523,387 nodes in the original graph. Generally, the pruning
performance of FairnessCore is better than that of ColorfulCore
with all parameter settings, especially for relatively small k val-
ues. For a larger k, the pruning effect of ColorfulCore is slightly
worse than that of FairnessCore. This is because FairnessCore
first invokes ColorfulCore to prune unpromising vertices. Since
ColorfulCore is already able to prune a large number of vertices
when k is large, FairnessCore cannot further prune too many
vertices after invoking ColorfulCore. These results confirm that
our pruning techniques are indeed very effective in reducing
the graph size.

TABLE 1
Datasets

Dataset n ¼ jV j m ¼ jEj dmax Description

Slashdot 82,169 504,230 2,252 Social network
Themarker 69,414 1,644,843 8,930 Social network
Aminer 423,469 1,231,112 712 Collaboration network
WikiTalk 2,394,385 5,021,410 100,029 Communication

network
Flixster 2,523,387 7,918,801 1,474 Social network
Pokec 1,632,80322,301,964 14,854 Social network
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Note that for the high-dimensional case (i.e., d � 3), only
the ColorfulCore algorithm can be used to prune the unprom-
ising vertices in WFCEnum, SFCEnum, RFCRefineEnum and
RFCAlterEnum algorithms. Therefore, we further study how
the dimension d affects the pruning performance of
ColorfulCore. Figs. 3f, 3g, 3h, 3i, and 3j show the number of
remaining vertices after invoking ColorfulCore with varying d.
As can be seen,ColorfulCore can substantially reduce the num-
ber of vertices with different d values overall datasets, which is
consistent with our previous findings. In general, the number
of remaining vertices decreases as d increases. This is because
with a larger d, the constraints of ColorfulCore become stricter,
thus more vertices can be pruned. These results further con-
firm the effectiveness of the proposed pruning techniques.

Evaluation of WFCEnum. Here we compare the
BaseWeak and the WFCEnum algorithms equipped with
BfsOD, VidOD and ColorOD by varying k and d. The results
are depicted in Fig. 4. As can be seen, BaseWeak can only
output the results on Slashdot and Pokec and cannot termi-
nate within the time limit on the other datasets. Our
WFCEnum algorithm, however, can work well on most
datasets. The running time of BaseWeak is insensitive w.r.t.
k and d, but the runtime of our WFCEnum algorithm
decreases as k or d increases as expected. Moreover, we can
see that the runtime of WFCEnum is several orders of mag-
nitude lower than that of BaseWeak for a large k or d. For
example, on Slashdot with k ¼ 11, WFCEnum takes 268 sec-
onds to enumerate all weak fair cliques, while BaseWeak
consumes 10,665 seconds. This is because BaseWeak needs
to enumerate all maximal cliques, which is the main

bottleneck of the algorithm. For a large k, WFCEnum can
prune many vertices by the colorful k-core based pruning
technique and the search space can also be reduced during
the backtracking procedure. For a large d, the number of
weak fair cliques decreases with an increasing d, thus reduc-
ing time overheads. These results confirm that the proposed
WFCEnum algorithm is much more efficient than
BaseWeak to find all weak fair cliques on large graphs.

In addition, we can also see that WFCEnum with
ColorOD is much faster than WFCEnum with BfsOD and
VidOD on almost all of the datasets. For instance, when k ¼
11, WFCEnum with ColorOD consumes 4 seconds to output
all results on Flixster, while WFCEnum with BfsOD and
VidOD takes 25 and 633 seconds, respectively. On the
Themarker dataset, when k ¼ 7, the running time of
WFCEnum with ColorOD is 5,550 seconds, while the two
baseline algorithms cannot finish within 3 hours. These
results indicate that the proposed algorithm is very efficient
to enumerate all weak fair cliques in large real-life graphs.
Also, the results confirm the efficiency of the proposed
ordering technique ColorOD.

Evaluation of SFCEnum. We evaluate the runtime of
SFCEnum with varying k and d. Since the proposed FairOD
is tailored for d ¼ 2, we only evaluate SFCEnum with
FairOD by varying k. The experimental results of SFCEnum
are illustrated in Fig. 5. In general, the runtime of SFCEnum
decreases as k or d increases. This is because for a larger k or
d, there are fewer cliques satisfying the definition of strong
fair clique, thus the runtime for enumerating all strong fair
cliques decreases. Additionally, we can see that the

Fig. 3. The number of remaining vertices after performing ColorfulCore, EnhancedCore and FairnessCore.

Fig. 4. Running time of the BaseWeak algorithm andWFCEnum algorithms with different orderings.
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SFCEnum algorithms with FairOD and HeurOD are faster
than those with BfsOD and VidOD on almost all of the data-
sets. For example, for k ¼ 8 on Themarker, the SFCEnum
algorithms equipped with FairOD and HeurOD consume
2,686 seconds and 2,789 seconds respectively, while the
SFCEnum algorithms with BfsOD and VidOD take 4,225
and 4,834 seconds to output all strong fair cliques respec-
tively. These results confirm the efficiency of the proposed
ordering techniques.

Additionally, by comparing BaseStrong and SFCEnum,
we find that the running time of BaseStrong on the datasets
except for Pokec exceeds the time limit, thus we do not
show them in Fig. 5. The proposed SFCEnum algorithms,
however, work well on most datasets. As aforementioned,
to enumerate strong fair cliques, BaseStrong needs to find
all cliques with size larger than k�An first. The number of
such cliques is often extremely large, thus the running time
of BaseStrong is significantly higher than SFCEnum.

Evaluation of RFCRefineEnum and RFCAlterEnum. Here, we
evaluate the proposed relative fair clique enumeration algo-
rithms, i.e., RFCRefineEnum and RFCAlterEnum, with varying
k, d and d. The experimental results are illustrated in Fig. 6.
Obviously, the runtime of RFCAlterEnum is significantly lower
than that of RFCRefineEnum within all parameter settings. In

general, the runtime of RFCRefineEnum and RFCAlterEnum
decreases as k or d increases as expected. This is because for a
larger k or d, fewer cliques satisfying the definition of a relative
fair clique, thus decreasing the runtime for enumerating all rela-
tive fair cliques. These results are consistent with the
previous findings. For the parameter d, the runtime of
RFCRefineEnum and RFCAlterEnum changes very smoothly
with increasing d. This is because the RFCRefineEnum algo-
rithm performs WFCEnum to find all weak fair cliques and
then enumerates relative fair cliques contained in them. Finding
all weak fair cliques occupies most of the runtime of
RFCRefineEnum, which is independent of the parameter d;
and the RFCAlterEnum algorithm adopts attribute-alterna-
tively-selection strategy to enumerate relative fair cliques, thus
the runtime is insensitive to the difference threshold d. Note
that for Slashdot, the RFCAlterEnum achieves the maximum
runtime at d ¼ 1. In this case, the attribute with the minimum
number of nodes is af and the numbers of nodeswith attributes
a0; a1; :::; af�1 reach the maximum. Thus, RFCAlterEnum needs
to update candidate sets to be empty for a0; a1; :::; af�1, which
causes a little bit of increase in running time.

From Fig. 6, we can also see that the RFCAlterEnum algo-
rithm is faster than RFCRefineEnum within all parameter set-
tings over all datasets. For example, in the case of k ¼ 9, the

Fig. 5. Running time of the BaseStrong algorithm and SFCEnum algorithms with different orderings.

Fig. 6. Running time of the RFCRefineEnum and RFCAlterEnum algorithms.
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runtime of RFCRefineEnum and RFCAlterEnum algorithms on
WikiTalk is 7,718 seconds and 2,683 seconds, respectively.
Clearly, the former is around 2.877 times slower than the latter.
While for d ¼ 3 on Slashdot, the RFCRefineEnum algorithm
consumes 9,628 seconds, while the RFCAlterEnum takes 2,461
seconds to output all relative fair cliques which is roughly
3.912 times faster than that of RFCRefineEnum. For d ¼ 3 on
Flixster, the RFCRefineEnum and RFCAlterEnum algorithms
take 6,492 seconds and 2,849 seconds to output the results,
respectively. The runtime of RFCAlterEnum is roughly 2.279
times faster than that of RFCRefineEnum. In addition, we also
evaluate the proposed algorithms by comparing them with the
BaseRelative algorithm. The running time of BaseRelative on
all datasets exceeds the time limit, thus we do not show them
in Fig. 6. From Fig. 6, the proposed RFCRefineEnum and
RFCAlterEnum algorithms work well on most datasets. To
search relative fair cliques, the BaseRelative algorithm needs
to find all maximal cliques first, thus the running time is signif-
icantly higher than our proposed algorithms. These results con-
firm the efficiency of the proposed RFCRefineEnum and
RFCAlterEnum algorithms.

The Number of Fairness-Aware Cliques. Figs. 7a, 7b, 7c, 7d, and
7e show the numbers of weak fair cliques, strong fair cliques
and relative fair cliques with different k. Clearly, there are
significant numbers of fair cliques in each dataset. In gen-
eral, the number of strong fair cliques is larger than that of
relative fair cliques, and the number of relative fair cliques
is larger than that of weak fair cliques. This finding is con-
sistent with our analysis in Section 2, since a weak fair cli-
que often contains a set of relative fair cliques, and a
relative fair clique includes a set of strong fair cliques. Addi-
tionally, we can see that the number of fair cliques decreases
when k increases. This is because with a larger k, both the
fairness and clique constraints become stricter, thus result-
ing in fewer fair cliques. Similar results can also be observed
when varying d from Figs. 7f, 7g, 7h, 7i, and 7j. Figs. 7k, 7l,
7m, 7n, and 7o also illustrate the numbers of relative fair cli-
ques with varying d. Obviously, there are also significant
numbers of relative fair cliques in each dataset for different
d. These results confirm that our relative fair clique model
indeed achieves a great compromise between the weak fair
clique and strong fair clique models by introducing the dif-
ference threshold d, which is consistent with our analysis in
Section 2.

Scalability Testing. To evaluate the scalability of the pro-
posedalgorithms,wegenerate foursubgraphs for eachdataset
by randomly picking 20%-80% of the edges, and evaluate the
runtime of all the proposed algorithms. Fig. 8 illustrates the
results on Flixster. The results on the other datasets are consis-
tent. In Fig. 8a, the runtime of WFCEnum with BfsOD and
VidOD increases sharply as the graph size increases, while for
ColorOD, it increases smoothlywith varyingm. Moreover, the
ColorOD ordering performsmuch better than the other order-
ings with all parameter settings, which is consistent with our
previousfindings.Analogously,whenvaryingm, the runtime
of SFCEnum with BfsOD and VidOD increases sharply with
respecttothegraphsizeinFig.8b.However,forSFCEnumwith
FairOD and HeurOD, the runtime increases smoothly with m
increases. FromFig. 8c, we can also see that for relative fair cli-
que enumeration algorithms, the runtime of RFCAlterEnum
increases very smoothlywith increasingm, while the runtime

Fig. 7. The number of weak fair cliques, strong fair cliques and relative fair cliques on various datasets.

Fig. 8. Scalability of WFCEnum, SFCEnum, RFCRefineEnum and
RFCAlterEnum algorithms.
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of RFCRefineEnum increases more sharply. Again,
RFCAlterEnum is significantly faster than RFCRefineEnum,
which is consistent with our previous findings. These results
demonstratethehighscalabilityoftheproposedalgorithms.

Memory Overhead. Fig. 9 shows the memory overheads of
WFCEnum, SFCEnum, RFCRefineEnum and RFCAlterEnum
algorithms on all datasets except for Aminer. Note that the
memory costs of different algorithms do not include the size of
the graph. From Figs. 9a and 9b, we can see that the memory
usages of WFCEnum and SFCEnum with different orderings
are always smaller than the graph size. This is because both
the WFCEnum and SFCEnum algorithms follow a depth-first
manner, thus the space overhead is linear. Additionally, the
memory overheads of WFCEnum and SFCEnum are robust
with respect to different orderings. This is because the space
usage in the enumeration procedure is mainly dominated by
the depth of the enumeration tree. Since the tree depth is deter-
mined by the clique size, the space overhead is insensitive to
different orderings. As can be seen from Fig. 9c, the memory
occupancy of RFCRefineEnum and RFCAlterEnum are also
significantly smaller than the graph size since they also enu-
merate relative fair cliques in a depth-first manner like
WFCEnum and SFCEnum.

Efficiency Testing on Aminer. Here we use a real-life
attributed graph Aminer to evaluate the proposed fair cli-
que models and enumeration algorithms. As aforemen-
tioned, the attribute value of vertices in Aminer is 2-
dimensional, thus we only vary k and d to conduct experi-
ments. The number of remaining vertices after performing
ColorfulCore, EnhancedCore and FairnessCore with vary-
ing k is depicted in Fig. 10a. Clearly, the ColorfulCore,
EnhancedCore and FairnessCore can significantly reduce
the number of vertices compared to the original graph (i.e.,
423,469 vertices) as expected. Moreover, the number of
remaining vertices decreases as k increases. These results
further confirm the effectiveness of our pruning techni-
ques. Figs. 10b and 10c show the running time of weak fair
clique enumeration algorithms and strong fair clique enu-
meration algorithms with different values of k. As can be
seen, BaseWeak and BaseStrong cannot terminate within
the time limit under most parameter settings, while the
proposed WFCEnum and SFCEnum algorithms can work
well. Again, the runtime of WFCEnum and SFCEnum with
different orderings decreases as k increases, which is con-
sistent with our previous findings. For relative fair clique

enumeration algorithms, the experimental results of vary-
ing k and d are illustrated in Figs. 10d and 10e Clearly,
RFCAlterEnum is faster than RFCRefineEnum within all
parameter settings. As k increases, both the runtime of
RFCRefineEnum and RFCAlterEnum decreases, while as d

increases, the runtime of the two algorithms changes very
smoothly, which is consistent. We also depict the numbers
of fair cliques with different k and d in Figs. 10f and 10g,
and the results confirm that there are indeed many num-
bers of weak fair cliques, strong fair cliques, and relative
fair cliques in Aminer. In addition, we show the memory
overheads of fair clique enumeration algorithms in Table 2.
As can be seen, the memory usages of WFCEnum,
RFCRefineEnum and RFCAlterEnum are smaller than the
graph size, and SFCEnum uses less than 500MB memory
which is acceptable for a modern computer. Moreover, the
memory overheads of WFCEnum and SFCEnum are robust
with respect to different orderings, which is consistent
with our previous findings. These results demonstrate the
effectiveness and efficiency of our proposed fair clique
models and algorithms.

6.3 Case Study

We conduct a case study on a collaboration network DBLP
to evaluate the effectiveness of our algorithms. The DBLP

Fig. 9. Memory overhead.

Fig. 10. The results of evaluating the proposed models and algorithms
on Aminer.
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dataset is downloaded from dblp.uni-trier.de/xml/. We
extract a subgraph DBCS from DBLP which contains the
authors who had published at least one paper in the data-
base (DB), data mining (DM), and artificial intelligence
(AI) related conferences. The DBCS subgraph contains
52,106 vertices (authors) and 341,382 undirected edges. The
attribute A represents the author’s main research area with
Aval ¼ fDB;DM;AIg. Each vertex has one attribute value
selected from the set Aval. We set the attribute value for each
vertex based on the maximum number of papers that the
author published in the related conferences. For example, if
an author has published 20 papers in DB related conferen-
ces and 5 papers in DM related conferences, we choose DB
as the author’s attribute value.

We perform the WFCEnum, SFCEnum and RFCRefine
Enum (RFCAlterEnum) algorithms tofindallweakfaircliques,
strong fair cliques and relative fair cliques onDBCSwith k ¼ 2
and d ¼ 2; 3. All algorithms apply ColorfulCore to prune the
unpromising vertices. The remaining graph after pruning by
ColorfulCoreonlyhas61verticesand516edges.Fig.11ashowsa
weak fair cliquewith size10,which involves6 authors ofDB, 2
authors ofDM and 2 authors ofAI. We use different colors to
represent the main research area of these authors, namely,
pink ¼ DB, green ¼ DM, and blue ¼ AI. Clearly, the number
of vertices with different attribute values is no less than k ¼ 2.
TheseresultsindicatethatWFCEnumcanfindfaircommunities
withdiverse researchareas.However, inFig. 11a, theweak fair

clique is imbalanced (w.r.t. different attributes) due to the high
percentage of authors with DB. Figs. 11b and 11c show two
strong fair cliques which are also subgraphs of the clique in
Fig. 11a. This is consistentwith thefinding that a strong fair cli-
que must be contained in a weak fair clique. As expected, the
number of authors with different attribute values is exactly
equal to2, thusitcanavoidtheattribute imbalanceprobleminthe
weakfairclique.

We also depict four relative fair cliques in Fig. 12, which are
related to the weak fair clique and strong fair cliques in Fig. 11.
Figs. 12a and 12b and Figs. 12c and 12d are the cliques for d ¼
2 and d ¼ 3, respectively. As can be seen from Figs. 12a and
12b, the number of vertices with different attribute values is
no less than k ¼ 2 and the maximum difference in the number
of vertices of those attributes is 2 � d ¼ 2. Moreover, these
two relative cliques are also subgraphs of the clique in Fig. 11a
and they both contains the strong fair cliques shown in
Figs. 11b and 11c. Similar results can also be found in Figs. 12c
and 12d. By comparing the cliques with d ¼ 2 and d ¼ 3, we
can find that the difference threshold d does measure the bal-
ance between the attributes in a relative fair clique. A larger d
leads to finding a clique in which the number of nodes of each
attribute varies greatly, and thus the result is closer to a weak
fair clique. While for a smaller d, the enumerated relative fair
cliques are closer to the model of strong fair clique. This find-
ing reveals that our relative fair clique model is a good com-
promise between the weak fair clique and the strong fair
clique models as described in Section 2.

All the results demonstrate that the WFCEnum, SFCEnum
and RFCAlterEnum/RFCRefineEnum algorithms can be used
to find fair communities with diverse attributes; SFCEnum
can further keep a balance over different attributes in the com-
munity; and RFCAlterEnum and RFCRefineEnum provide a
more flexible way to find fair communities as a compromise
by specifying the difference threshold d. In addition, this case
study also indicates that the fairness-aware cliques show the
scholars of different research areas who cooperate with each
other, and further reflect the closeness of different research
areas. That is, the closer these areas are, the larger fair cliques
will be. If no fair clique can be found, then it means that at
least one research area has no obvious connection to others.
The fairness-aware clique models aim to find balance among
different attributes, which are suitable to be used in cross-cut-
ting areas.

TABLE 2
Memory Overhead of Fair Clique Enumeration Algorithms on

Aminer

Algorithm Ordering Memory overhead (MB)

Graph size - 12.624

WFCEnum ColorOD 4.856
BfsOD 4.856
VidOD 4.856

SFCEnum FairOD 470.962
HeurOD 474.193
BfsOD 474.193
VidOD 474.193

RFCRefineEnum - 4.856
RFCAlterEnum - 8.077

Fig. 11. Results of WFCEnum and SFCEnum on DBCS with
Aval ¼ fDB;DM;AIg.

Fig. 12. Results of RFCRefineEnum/RFCAlterEnum on DBCS with
Aval ¼ fDB;DM;AIg.
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6.4 Discussions

As shown in our experiments, seeking a suitable k for our
fair clique model is important for practical applications.
Here we introduce a heuristic method to find an appropri-
ate k. Since the sizes of fair cliques are clearly no larger than
the maximum clique size of the graph, we can first compute
the maximum clique size of a graph by using the state-of-
the-art maximum clique search algorithms [31], [32]. Sup-
pose that the size of a maximum clique is Cmax. Then, the
parameter k in our fair clique models satisfies k � bCmax

An
c.

Note that when the maximum clique size is hard to compute
for some instances, an alternative solution is to compute an
approximation of Cmax by using a linear-time greedy algo-
rithm [33]. Therefore, for a particular application, we can
use a binary search method to find an appropriate k from
the interval ½1; bCmax

An
c
 by invoking the proposed algorithms

to compute the fairness-aware cliques.

7 RELATED WORK

Attributed Graph Mining. Our work is related to attributed
graph mining which has attracted much attention in data
mining due to the diverse applications [9], [10], [11], [12],
[13], [14]. For example, Li et al. [9] proposed an embedding-
based model to discover communities in attributed graphs.
Tong et al. [10] studied the problem of finding subgraphs
for given query patterns in attributed graphs. Fang et al.
[11] investigated the attributed community search problem
and developed an index structure, called CL-tree, to effi-
ciently support attributed community search. Khan et al.
[12] proposed an algorithm to mine subgraphs such that the
vertices in the subgraph are closely connected and each ver-
tex contains as many query keywords as possible. Pizzuti
et al. [13] introduced a community mining algorithm for
attributed graphs that considers both node similarity and
structural connectivity. In this paper, we study a problem of
mining fair communities (fair cohesive subgraph) in attrib-
uted graphs. To the best of our knowledge, our work is the
first to study the fair community search problem in attrib-
uted networks.

Fairness-Aware Data Mining. Our work is related to fair-
ness-aware data mining which has been recognized as an
important issue in data mining and machine learning. To
measure fairness, many concepts have been proposed in the
literature [17]. Zehlike et al. [20] proposed a method to gen-
erate a ranking with a guaranteed group fairness, which can
ensure the proportion of protected elements in the rank is
no less than a given threshold. Serbos et al. [21] investigated
a problem of fairness in package-to-group recommendation,
and proposed a greedy algorithm to find approximate solu-
tions. Beutel et al. [22] also studied fairness in recommenda-
tion systems and presented a set of metrics to evaluate
algorithmic fairness. Another line of research on fairness
was studied in classification algorithms. Some notable work
includes demographic parity [19] and equality of opportu-
nity [18]. For instance, Hardt et al. [18] proposed a frame-
work that can optimally adjust any learned predictor to
reduce bias. Compared to the existing studies, our defini-
tion of fairness which requires the equality of different attri-
bute values in a group is different from those in the
machine learning literature.

Cohesive Subgraph Mining. Our work is also related to
cohesive subgraph mining. Clique is an important cohesive
subgraph model and there are numerous studies that focus
on clique mining. Finding maximum cliques, aiming to dis-
cover the cliques with the largest size, has attracted much
attention. The algorithms for maximum clique search are
mainly based on the branch-and-bound framework [34],
[35]. Ostergard et al. [34] presented a branch-and-bound
algorithm with the vertex order taken from a coloring of the
vertices. Konc et al. [35] proposed an approximate coloring
algorithm and used it to provide bounds of the size of the
maximum clique. Tomita et al. proposed a series of maxi-
mum clique algorithms, called MCQ [36], MCR [37], MCS
[38] and MCT [31], [39], based on the coloring technique.
All these algorithms either use the coloring technique to
obtain an upper bound of the maximum clique or apply the
coloring heuristics to design a branching strategy. More-
over, all these algorithms are mainly tailored to non-attrib-
uted graphs. Different from these works, we use the
coloring technique to develop a k-core based graph reduc-
tion approach; and our work aims to find fairness-aware cli-
ques in attributed graphs.

Another research problem of clique mining is to enumerate
maximal cliques [29], [30], [40], [41]. The well-known algo-
rithm for enumerating all maximal cliques is the classic Bron-
Kerbosch (BK) algorithm [29]. Tomita et al. [30] proposed an
algorithm, using a greedy pivoting technique, to find all maxi-
mal cliques. Eppsten et al. [40] further improved the BK algo-
rithm based on a heuristic degeneracy ordering. Yuan et al.
[41], [42] studies the diversified top-k clique search problem
which aims to find top-k maximal cliques that can cover most
number of nodes in the graph. In addition, some relaxed defi-
nitions of clique were also proposed, such as n-clique [43],
n-clan, n-club [44], k-plex [45], [46], quasi-clique [47], [48],
k-core [49], [50], [51], and so on [52]. However, the solutions
mentioned above are not tailored for attributed graphs, and
thus cannot be directly used to solve our problems.

The clique model has also been extended to various net-
works, such as signed graphs and bipartite graphs, and has
been widely investigated in [53], [54], [55], [56], [57], [58]. Li
et al. [53], [57] introduced a signed clique model by con-
straining the number of positive and negative edges, and
studied the problems of finding all and top-r maximal
signed cliques in signed networks. Chen et al. [54] proposed
a balanced clique model based on the structural balance the-
ory, and developed a new algorithm with two optimization
strategies to compute all the maximal balanced cliques in
signed networks. However, the techniques in the above
studies are tailored for signed networks, and thus cannot be
directly used to solve fair clique enumeration problems for
graphs where the vertices have attributes. For bipartite
graphs, Lyu et al. [53] defined a size-constrained maximum
edge biclique and studied the problem of finding a maxi-
mum biclique for bipartite graphs with billion scale. Chen
et al. [56] investigated the maximal bicliques enumeration
problem and proposed a novel unilateral order and a batch-
pivots technique. Recently, Chen et al. [56] presented a bal-
anced biclique model that requires the number of vertices
on two sides of a biclique to be the same, and developed
exact algorithms to find a maximum balanced biclique. The
above studies focus on non-attributed biclique graphs,
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which are clearly different from our work and thus the
related solutions cannot be used to address the fair clique
enumeration problems. In this paper, we develop novel
algorithms to compute maximal fair cliques in attributed
graphs with several non-trivial pruning techniques.

8 CONCLUSION

In this paper, we study a problem of enumerating fairness-
aware cliques in attributed graphs. To this end, we propose a
weak fair clique model, a strong fair clique model and a rela-
tive fair clique model. To enumerate all weak fair cliques, we
first present a novel colorful k-core based pruning technique
to prune unpromising vertices. And then we develop a back-
tracking algorithm with a carefully-designed ordering tech-
nique to enumerate all weak fair cliques in the pruned graph.
To enumerate all strong fair cliques, we propose a new fair-
ness k-core based pruning algorithm for the 2D case, and then
develop a backtracking algorithm with a fairness k-core based
ordering technique to enumerate all strong fair cliques. We
also present a strong fair clique enumeration algorithm with a
heuristic ordering for handling high-dimensional cases. To
enumerate all relative fair cliques, we present two efficient
algorithms based on a weak fair clique refinement strategy
and an attribute-alternatively-selection strategy, respectively.
We also design an enhanced colorful k-core based pruning
technique for 2D attributes, which can also be applied to
reduce the graph for weak fair clique enumeration. Extensive
experiments are conducted using four large real-life graphs,
and the results demonstrate the efficiency and effectiveness of
the proposed algorithms.

There are several future directions that are deserved further
investigation. First, the proposed models are based on the con-
cept of clique which may be strict for some real-life applica-
tions. A promising direction is to relax the clique model used
in our definitions, and apply other models (e.g., k-truss and
k-edge connected subgraph) to define the fairness-aware cohe-
sive subgraphs, which clearly requires new algorithms with
different techniques. Second, the proposed pruning technique
is mainly based on the colorful k-core. An interesting question
is that can we develop a colorful k-truss based pruning tech-
nique? Since k-truss is often much denser than k-core, such a
pruning technique may be more powerful than our colorful
k-core based technique. Finally, it is also interesting to develop
more efficient branching and ordering techniques to further
speed up the backtracking enumeration procedure. We leave
these problems as interesting future works.

REFERENCES

[1] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community
search in large networks,” Proc. VLDB Endowment, vol. 8, no. 5,
pp. 509–520, 2015.

[2] S. Papadopoulos, Y. Kompatsiaris, A. Vakali, and P. Spyridonos,
“Community detection in social media - performance and applica-
tion considerations,” Data Mining Knowl. Discov., vol. 24, no. 3,
pp. 515–554, 2012.

[3] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-
truss community in large and dynamic graphs,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2014, pp. 1311–1322.

[4] T. Friedrich and A. Krohmer, “Cliques in hyperbolic random
graphs,” in Proc. IEEE Conf. Comput. Commun., 2015, pp. 1544–1552.

[5] R. Li, Q. Dai, G. Wang, Z. Ming, L. Qin, and J. X. Yu, “Improved
algorithms for maximal clique search in uncertain networks,” in
Proc. Int. Conf. Data Eng., 2019, pp. 1178–1189.

[6] L. Yuan, L. Qin, W. Zhang, L. Chang, and J. Yang, “Index-based
densest clique percolation community search in networks,” IEEE
Trans. Knowl. Data Eng., vol. 30, no. 5, pp. 922–935, May 2018.

[7] H. Yu, A. Paccanaro, V. Trifonov, and M. Gerstein, “Predicting
interactions in protein networks by completing defective cliques,”
Bioinf., vol. 22, no. 7, pp. 823–829, 2006.

[8] V. Boginski, S. Butenko, and P. M. Pardalos, “Mining market data:
A network approach,” Comput. Operations Res., vol. 33, no. 11,
pp. 3171–3184, 2006.

[9] Y. Li, C. Sha, X. Huang, and Y. Zhang, “Community detection in
attributed graphs: An embedding approach,” in Proc. Conf. Assoc.
Advance. Artif. Intell., 2018, pp. 338–345.

[10] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad, “Fast best-
effort pattern matching in large attributed graphs,” in Proc. Int.
Conf. Knowl. Discov. Data Mining, 2007, pp. 737–746.

[11] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search
for large attributed graphs,” Proc. VLDB Endowment, vol. 9, no. 12,
pp. 1233–1244, 2016.

[12] A. Khan et al., “Compact group discovery in attributed graphs
and social networks,” Inf. Process. Manage., vol. 57, no. 2, 2020,
Art. no. 102054.

[13] C. Pizzuti and A. Socievole, “A genetic algorithm for community
detection in attributed graphs,” in Proc. Int. Conf. Appl. Evol. Com-
put., 2018, pp. 159–170.

[14] Y. Wu, Z. Zhong, W. Xiong, and N. Jing, “Graph summarization
for attributed graphs,” in Proc. Int. Conf. Inf. Sci., Electron. Elect.
Eng., 2014, pp. 503–507.

[15] J. Yang, J. McAuley, and J. Leskovec, “Community detection in
networks with node attributes,” in Proc. Int. Conf. Data Mining,
2013, pp. 1151–1156.

[16] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng, “A model-based
approach to attributed graph clustering,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2012, pp. 505–516.

[17] S. Verma and J. Rubin, “Fairness definitions explained,” in Proc.
IEEE/ACM Int. Workshop Softw. Fairness, 2018, pp. 1–7.

[18] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in
supervised learning,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2016, pp. 3315–3323.

[19] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. S. Zemel,
“Fairness through awareness,” in Proc. Innov. Theor. Comput. Sci.
Conf., 2012, pp. 214–226.

[20] M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R.
Baeza-Yates, “Fa*ir: A fair top-k ranking algorithm,” in Proc. Conf.
Inf. Knowl. Manage., 2017, pp. 1569–1578.

[21] D. Serbos, S. Qi, N. Mamoulis, E. Pitoura, and P. Tsaparas,
“Fairness in package-to-group recommendations,” in Proc. Int.
World Wide Web Conf., 2017, pp. 371–379.

[22] A. Beutel et al., “Fairness in recommendation ranking through
pairwise comparisons,” in Proc. Int. Conf. Knowl. Discov. Data Min-
ing, 2019, pp. 2212–2220.

[23] D. W. Matula, G. Marble, and J. D. Isaacson, “Graph coloring algo-
rithms,” in Graph Theory and Computing. New York, NY, USA:
Academic Press, 1972, pp. 109–122.

[24] T. R. Jensen and B. Toft, Graph Coloring Problems, vol. 39. Hoboken,
NJ, USA: Wiley, 2011.

[25] V. Batagelj and M. Zaversnik, “An O(m) algorithm for cores
decomposition of networks,” 2003, arXiv:cs/0310049.

[26] D. W. Matula and L. L. Beck, “Smallest-last ordering and cluster-
ing and graph coloring algorithms,” J. ACM, vol. 30, no. 3,
pp. 417–427, 1983.

[27] J. Mitchem, “On various algorithms for estimating the chromatic
number of a graph,” Comput. J., vol. 19, no. 2, pp. 182–183, 1976.

[28] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson,
“Ordering heuristics for parallel graph coloring,” in Proc. ACM
Symp. Parallelism Algorithms Archit., 2014, pp. 166–177.

[29] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of an
undirected graph,” Commun. ACM, vol. 16, no. 9, pp. 575–577,
1973.

[30] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time
complexity for generating all maximal cliques and computational
experiments,” Theor. Comput. Sci., vol. 363, no. 1, pp. 28–42, 2006.

[31] E. Tomita, “Efficient algorithms for finding maximum and maxi-
mal cliques and their applications,” in Proc. Int. Workshop Algo-
rithms Comput., 2017, pp. 3–15.

11386 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 11, NOVEMBER 2023

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:48:22 UTC from IEEE Xplore.  Restrictions apply. 



[32] L. Chang, “Efficient maximum clique computation over large
sparse graphs,” in Proc. Int. Conf. Knowl. Discov. Data Mining,
2019, pp. 529–538.

[33] R. A. Rossi, D. F. Gleich, and A. H. Gebremedhin, “Parallel maxi-
mum clique algorithms with applications to network analysis,”
SIAM J. Sci. Comput., vol. 37, no. 5, pp. C589–C616, 2015.

[34] P. R. €Osterga
�
rd, “A fast algorithm for the maximum clique prob-

lem,”Discrete Appl. Math., vol. 120, no. 1–3, pp. 197–207, 2002.
[35] J. Konc and D. Janezic, “An improved branch and bound algo-

rithm for the maximum clique problem,” Proteins, vol. 4, no. 5,
pp. 590–596, 2007.

[36] E. Tomita and T. Seki, “An efficient branch-and-bound algorithm
for finding a maximum clique,” in Proc. Int. Conf. Discrete Math.
Theor. Comput. Sci., 2003, pp. 278–289.

[37] E. Tomita and T. Kameda, “An efficient branch-and-bound algorithm
for finding a maximum clique with computational experiments,” J.
Glob. Optim., 2009, Art. no. 311.

[38] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki, “A
simple and faster branch-and-bound algorithm for finding amaximum
clique,” in Proc. Int. Workshop Algorithms Comput., 2010, pp. 191–203.

[39] E. Tomita, K. Yoshida, T. Hatta, A. Nagao, H. Ito, and M. Wakatsuki,
“Amuch faster branch-and-bound algorithm for finding a maximum
clique,” in Proc. Int. Workshop Front. Algorithmics, 2016, pp. 215–226.

[40] D. Eppstein and D. Strash, “Listing all maximal cliques in large
sparse real-world graphs,” in Proc. Int. Symp. Exp. Algorithms,
2011, pp. 364–375.

[41] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang, “Diversified top-
k clique search,” in Proc. Int. Conf. Data Eng., 2015, pp. 387–398.

[42] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang, “Diversified top-
k clique search,” VLDB J., vol. 25, no. 2, pp. 171–196, 2016.

[43] R. D. Alba, “A graph-theoretic definition of a sociometric clique,”
J. Math. Sociol., vol. 3, no. 1, pp. 113–126, 1973.

[44] R. J. Mokken et al., “Cliques, clubs and clans,” Qual. Quantity,
vol. 13, no. 2, pp. 161–173, 1979.

[45] S. B. Seidman and B. L. Foster, “A graph-theoretic generalization of
the clique concept,” J. Math. Sociol., vol. 6, no. 1, pp. 139–154, 1978.

[46] B. Balasundaram, S. Butenko, and I. V. Hicks, “Clique relaxations
in social network analysis: The maximum k-plex problem,”Opera-
tions Res., vol. 59, no. 1, pp. 133–142, 2011.

[47] J. Pardalos and M. Resende, “On maximum clique problems in
very large graphs,”DIMACS Ser., vol. 50, pp. 119–130, 1999.

[48] J. Abello, M. G. Resende, and S. Sudarsky, “Massive quasi-clique
detection,” in Proc. Latin Amer. Symp. Theor. Inform., 2002, pp. 598–612.

[49] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, “K-core
organization of complex networks,” Phys. Rev. Lett., vol. 96, no. 4,
2006, Art. no. 040601.

[50] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “K-core
decomposition of large networks on a single PC,” VLDB J., vol. 9,
no. 1, pp. 13–23, 2015.

[51] A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-
core decomposition,” IEEE Trans. Parallel Distrib. Syst., vol. 24,
no. 2, pp. 288–300, Feb. 2013.

[52] S. P. Borgatti, M. G. Everett, and P. R. Shirey, “LS sets, lambda
sets and other cohesive subsets,” Social Netw., vol. 12, no. 4,
pp. 337–357, 1990.

[53] R. Li et al., “Efficient signed clique search in signed networks,” in
Proc. Int. Conf. Data Eng., 2018, pp. 245–256.

[54] Z. Chen, L. Yuan, X. Lin, L. Qin, and J. Yang, “Efficient maximal
balanced clique enumeration in signed networks,” in Proc. Int.
World Wide Web Conf., 2020, pp. 339–349.

[55] B. Lyu, L. Qin, X. Lin, Y. Zhang, Z. Qian, and J. Zhou, “Maximum
biclique search at billion scale,” Proc. VLDB Endowment, vol. 13,
no. 9, pp. 1359–1372, 2020.

[56] L. Chen, C. Liu, R. Zhou, J. Xu, and J. Li, “Efficient exact algo-
rithms for maximum balanced biclique search in bipartite
graphs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2021,
pp. 248–260.

[57] R. Li et al., “Signed clique search in signed networks: Concepts
and algorithms,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 2,
pp. 710–727, Feb. 2021.

[58] L. Chen, C. Liu, R. Zhou, J. Xu, and J. Li, “Efficient maximal bicli-
que enumeration for large sparse bipartite graphs,” Proc. VLDB
Endowment, vol. 15, no. 8, pp. 1559–1571, 2022.

Qi Zhang is currently working toward the PhD
degree with the Beijing Institute of Technology,
China. Her current research interests include
social network analysis and data-driven graph
mining.

Rong-Hua Li received the PhD degree from the
Chinese University of Hong Kong in 2013. He is
currently a professor with the Beijing Institute of
Technology, Beijing, China. His research interests
include graph data management and mining,
social network analysis, graph computation sys-
tems, and graph-based machine learning.

Minjia Pan received the BS degree in computer
science from Northeastern University, China in
2019. She is currently working toward the under
graduation degree with the Beijing Institute of
Technology, China. Her current research interests
include social network analysis and graph mining.

Yongheng Dai received the PhD degree from The
Chinese University of Hong Kong in 2011. Now he
works as an R&D engineer in the areas of domain
modeling, knowledge formalization, and knowl-
edge-driven machine learning in the China Acad-
emy of Electronics and Information Technology
(CAEIT). From 2011 to 2013, he worked on optical
fiber communication and digital signal processing
in Huawei. After that, he worked on OFDM-based
visible light communication and OCC-based indoor
positioning until 2017 in CAEIT. He has published

33 papers in international journals and conferences, and holds 10 pending
patents. He is also the recipient of China postdoctoral science foundation
grant 2015, Beijing Science and Technology Award 2008, and IEEE Pho-
tonics Society (HK chapter) Best Paper Award 2008.

Qun Tian received the master’s degree from the
Harbin Institute of Technology, is a senior engineer
in artificial intelligence with Diankeyun Technolo-
gies Ltd, Beijing, China. His interests include com-
plex network, graph neural network and knowledge
inference.

Guoren Wang received the BSc, MSc, and PhD
degrees from the Department of Computer Sci-
ence, Northeastern University, China, in 1988,
1991 and 1996, respectively. Currently, he is a pro-
fessor with the Department of Computer Science,
Beijing Institute of Technology, Beijing, China. His
research interests include XML data management,
query processing and optimization, bioinformatics,
high dimensional indexing, parallel database sys-
tems, and cloud data management. He has pub-
lishedmore than 100 research papers.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ETAL.: FAIRNESS-AWARE MAXIMALCLIQUE IN LARGE GRAPHS: CONCEPTS AND ALGORITHMS 11387

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 02:48:22 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


